BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31340472)

  • 1. Photothermal-Induced Antibacterial Activity of Gold Nanorods Loaded into Polymeric Hydrogel against
    Al-Bakri AG; Mahmoud NN
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31340472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.
    Harrison JJ; Turner RJ; Ceri H
    Environ Microbiol; 2005 Jul; 7(7):981-94. PubMed ID: 15946294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective control of biofilms by photothermal therapy using a gold nanorod hydrogel.
    Bermúdez-Jiménez C; Niño-Martínez N; Patiño-Marín N; Martínez-Gutiérrez F; Ruiz F; Bach H; Martínez-Castañón G
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):333-342. PubMed ID: 31041849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material.
    Vassena C; Fenu S; Giuliani F; Fantetti L; Roncucci G; Simonutti G; Romanò CL; De Francesco R; Drago L
    Int J Antimicrob Agents; 2014 Jul; 44(1):47-55. PubMed ID: 24933446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1.
    Rajkumari J; Busi S; Vasu AC; Reddy P
    Microb Pathog; 2017 Jun; 107():261-269. PubMed ID: 28377235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Light-Enhanced Protease-Conjugated Gold Nanorods As A Photothermal Antimicrobial Agent For Elimination Of Exotoxin And Biofilms.
    Li W; Geng X; Liu D; Li Z
    Int J Nanomedicine; 2019; 14():8047-8058. PubMed ID: 31632017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential Accumulation of Phospholipid-PEG and Cholesterol-PEG Decorated Gold Nanorods into Human Skin Layers and Their Photothermal-Based Antibacterial Activity.
    Mahmoud NN; Alhusban AA; Ali JI; Al-Bakri AG; Hamed R; Khalil EA
    Sci Rep; 2019 Apr; 9(1):5796. PubMed ID: 30962476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection.
    Hengzhuang W; Wu H; Ciofu O; Song Z; Høiby N
    Antimicrob Agents Chemother; 2012 May; 56(5):2683-90. PubMed ID: 22354300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin.
    Ahmed MN; Porse A; Sommer MOA; Høiby N; Ciofu O
    Antimicrob Agents Chemother; 2018 Aug; 62(8):. PubMed ID: 29760140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral super-oxidised solutions are effective in killing P. aeruginosa biofilms.
    Sauer K; Thatcher E; Northey R; Gutierrez AA
    Biofouling; 2009; 25(1):45-54. PubMed ID: 18846439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of
    Anju VT; Paramanantham P; Siddhardha B; Sruthil Lal SB; Sharan A; Alyousef AA; Arshad M; Syed A
    Int J Nanomedicine; 2019; 14():3861-3874. PubMed ID: 31213806
    [No Abstract]   [Full Text] [Related]  

  • 12. The Effect of Azithromycin on Biofilms Formation by Pathogens of Implant-Associated Infection in Large Joints.
    Babushkina IV; Ulyanov VY; Mamonova IA; Shpinyak SP
    Bull Exp Biol Med; 2020 Oct; 169(6):798-801. PubMed ID: 33108560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa.
    Teitzel GM; Parsek MR
    Appl Environ Microbiol; 2003 Apr; 69(4):2313-20. PubMed ID: 12676715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The assessment of the antibacterial and antifungal activities of aspirin, EDTA and aspirin-EDTA combination and their effectiveness as antibiofilm agents.
    Al-Bakri AG; Othman G; Bustanji Y
    J Appl Microbiol; 2009 Jul; 107(1):280-6. PubMed ID: 19302313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH
    Loffredo MR; Ghosh A; Harmouche N; Casciaro B; Luca V; Bortolotti A; Cappiello F; Stella L; Bhunia A; Bechinger B; Mangoni ML
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2327-2339. PubMed ID: 28912103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacodynamics of ciprofloxacin against Pseudomonas aeruginosa planktonic and biofilm-derived cells.
    Marques CNH; Nelson SM
    Lett Appl Microbiol; 2019 Apr; 68(4):350-359. PubMed ID: 30740751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1.
    Orlandi VT; Rybtke M; Caruso E; Banfi S; Tolker-Nielsen T; Barbieri P
    Biofouling; 2014 Sep; 30(8):883-91. PubMed ID: 25184429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-Loaded Hydrogel for the Light-Activated Release and Photothermal Enhancement of Antimicrobial Peptides.
    Moorcroft SCT; Roach L; Jayne DG; Ong ZY; Evans SD
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24544-24554. PubMed ID: 32312040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and
    Shen Y; Li P; Chen X; Zou Y; Li H; Yuan G; Hu H
    Microb Drug Resist; 2020 Mar; 26(3):290-299. PubMed ID: 31211651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture.
    Street CN; Gibbs A; Pedigo L; Andersen D; Loebel NG
    Photochem Photobiol; 2009; 85(1):137-43. PubMed ID: 18673325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.