These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 31340706)

  • 21. Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans.
    Scharf A; Piechulek A; von Mikecz A
    ACS Nano; 2013 Dec; 7(12):10695-703. PubMed ID: 24256469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The protein kinase MBK-1 contributes to lifespan extension in
    Mack HID; Zhang P; Fonslow BR; Yates JR
    Aging (Albany NY); 2017 May; 9(5):1414-1432. PubMed ID: 28562327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production.
    Li Y; Wang C; Huang Y; Fu R; Zheng H; Zhu Y; Shi X; Padakanti PK; Tu Z; Su X; Zhang H
    Cell Physiol Biochem; 2018; 49(3):947-960. PubMed ID: 30184537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model.
    Guo Z; Martucci NJ; Liu Y; Yoo E; Tako E; Mahler GJ
    Nanotoxicology; 2018 Jun; 12(5):485-508. PubMed ID: 29668341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The plasma membrane calcium ATPase MCA-3 is required for clathrin-mediated endocytosis in scavenger cells of Caenorhabditis elegans.
    Bednarek EM; Schaheen L; Gaubatz J; Jorgensen EM; Fares H
    Traffic; 2007 May; 8(5):543-53. PubMed ID: 17343680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SEL-2, the C. elegans neurobeachin/LRBA homolog, is a negative regulator of lin-12/Notch activity and affects endosomal traffic in polarized epithelial cells.
    de Souza N; Vallier LG; Fares H; Greenwald I
    Development; 2007 Feb; 134(4):691-702. PubMed ID: 17215302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabotyping of Caenorhabditis elegans and their culture media revealed unique metabolic phenotypes associated to amino acid deficiency and insulin-like signaling.
    Martin FP; Spanier B; Collino S; Montoliu I; Kolmeder C; Giesbertz P; Affolter M; Kussmann M; Daniel H; Kochhar S; Rezzi S
    J Proteome Res; 2011 Mar; 10(3):990-1003. PubMed ID: 21275419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of particle size and light exposure on the effects of TiO2 nanoparticles on Caenorhabditis elegans.
    Angelstorf JS; Ahlf W; von der Kammer F; Heise S
    Environ Toxicol Chem; 2014 Oct; 33(10):2288-96. PubMed ID: 24943878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern Formation in the Longevity-Related Expression of Heat Shock Protein-16.2 in Caenorhabditis elegans.
    Wentz JM; Mendenhall AR; Bortz DM
    Bull Math Biol; 2018 Oct; 80(10):2669-2697. PubMed ID: 30097920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-tissue proteomics in
    Tan CH; Wang TY; Park H; Lomenick B; Chou TF; Sternberg PW
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2322588121. PubMed ID: 38861598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early-life long-term exposure to ZnO nanoparticles suppresses innate immunity regulated by SKN-1/Nrf and the p38 MAPK signaling pathway in Caenorhabditis elegans.
    Li SW; Huang CW; Liao VH
    Environ Pollut; 2020 Jan; 256():113382. PubMed ID: 31662252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DAF-16: FOXO in the Context of C. elegans.
    Tissenbaum HA
    Curr Top Dev Biol; 2018; 127():1-21. PubMed ID: 29433733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake of bright fluorophore core-silica shell nanoparticles by biological systems.
    Zane A; McCracken C; Knight DA; Young T; Lutton AD; Olesik JW; Waldman WJ; Dutta PK
    Int J Nanomedicine; 2015; 10():1547-67. PubMed ID: 25759579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SAC-1 ensures epithelial endocytic recycling by restricting ARF-6 activity.
    Chen D; Yang C; Liu S; Hang W; Wang X; Chen J; Shi A
    J Cell Biol; 2018 Jun; 217(6):2121-2139. PubMed ID: 29563216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles.
    Shao H; Han Z; Krasteva N; Wang D
    Nanotoxicology; 2019 Mar; 13(2):174-188. PubMed ID: 30729873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoengineered silica: Properties, applications and toxicity.
    Mebert AM; Baglole CJ; Desimone MF; Maysinger D
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):753-770. PubMed ID: 28578101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling.
    Guo C; Wang J; Yang M; Li Y; Cui S; Zhou X; Li Y; Sun Z
    Nanotoxicology; 2017; 11(9-10):1176-1194. PubMed ID: 29164963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A splice acceptor mutation in C. elegans daf-19/Rfx disrupts functional specialization of male-specific ciliated neurons but does not affect ciliogenesis.
    Wells KL; Rowneki M; Killian DJ
    Gene; 2015 Apr; 559(2):196-202. PubMed ID: 25637722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: roles of insulin-like growth factor-1 signaling pathway.
    Wang S; Teng X; Wang Y; Yu HQ; Luo X; Xu A; Wu L
    Chemosphere; 2014 Oct; 112():248-55. PubMed ID: 25048913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of sex and insulin/insulin-like growth factor-1 signaling on performance in an associative learning paradigm in Caenorhabditis elegans.
    Vellai T; McCulloch D; Gems D; Kovács AL
    Genetics; 2006 Sep; 174(1):309-16. PubMed ID: 16849598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.