BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31341165)

  • 1. Reconstitution reveals how myosin-VI self-organises to generate a dynamic mechanism of membrane sculpting.
    Rogez B; Würthner L; Petrova AB; Zierhut FB; Saczko-Brack D; Huergo MA; Batters C; Frey E; Veigel C
    Nat Commun; 2019 Jul; 10(1):3305. PubMed ID: 31341165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin VI, an actin motor for membrane traffic and cell migration.
    Buss F; Luzio JP; Kendrick-Jones J
    Traffic; 2002 Dec; 3(12):851-8. PubMed ID: 12453148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myosin VI: a multifunctional motor.
    Lister I; Roberts R; Schmitz S; Walker M; Trinick J; Veigel C; Buss F; Kendrick-Jones J
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):685-8. PubMed ID: 15493988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin VI regulates actin dynamics and melanosome biogenesis.
    Loubéry S; Delevoye C; Louvard D; Raposo G; Coudrier E
    Traffic; 2012 May; 13(5):665-80. PubMed ID: 22321127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane curvature at a glance.
    McMahon HT; Boucrot E
    J Cell Sci; 2015 Mar; 128(6):1065-70. PubMed ID: 25774051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic multimerization of Dab2-Myosin VI complexes regulates cargo processivity while minimizing cortical actin reorganization.
    Rai A; Vang D; Ritt M; Sivaramakrishnan S
    J Biol Chem; 2021; 296():100232. PubMed ID: 33372034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation.
    Alimohamadi H; Smith AS; Nowak RB; Fowler VM; Rangamani P
    PLoS Comput Biol; 2020 May; 16(5):e1007890. PubMed ID: 32453720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers.
    Ripoll L; Heiligenstein X; Hurbain I; Domingues L; Figon F; Petersen KJ; Dennis MK; Houdusse A; Marks MS; Raposo G; Delevoye C
    J Cell Biol; 2018 Aug; 217(8):2709-2726. PubMed ID: 29875258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach.
    Mukherjea M; Llinas P; Kim H; Travaglia M; Safer D; Ménétrey J; Franzini-Armstrong C; Selvin PR; Houdusse A; Sweeney HL
    Mol Cell; 2009 Aug; 35(3):305-15. PubMed ID: 19664948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization.
    Le Roux AL; Tozzi C; Walani N; Quiroga X; Zalvidea D; Trepat X; Staykova M; Arroyo M; Roca-Cusachs P
    Nat Commun; 2021 Nov; 12(1):6550. PubMed ID: 34772909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions.
    Reynwar BJ; Illya G; Harmandaris VA; Müller MM; Kremer K; Deserno M
    Nature; 2007 May; 447(7143):461-4. PubMed ID: 17522680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin-II activity generates a dynamic steady state with continuous actin turnover in a minimal actin cortex.
    Sonal ; Ganzinger KA; Vogel SK; Mücksch J; Blumhardt P; Schwille P
    J Cell Sci; 2018 Dec; 132(4):. PubMed ID: 30538127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis.
    Rogat AD; Miller KG
    J Cell Sci; 2002 Dec; 115(Pt 24):4855-65. PubMed ID: 12432073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle transport: the role of actin filaments and myosin motors.
    DePina AS; Langford GM
    Microsc Res Tech; 1999 Oct; 47(2):93-106. PubMed ID: 10523788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning myosin-driven sorting on cellular actin networks.
    Hariadi RF; Sommese RF; Sivaramakrishnan S
    Elife; 2015 Mar; 4():. PubMed ID: 25738229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of cytoskeletal and membrane tethering defects but not defects in membrane trafficking in the intestinal brush border of mice lacking both myosin Ia and myosin VI.
    Hegan PS; Kravtsov DV; Caputo C; Egan ME; Ameen NA; Mooseker MS
    Cytoskeleton (Hoboken); 2015 Sep; 72(9):455-76. PubMed ID: 26286357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of a Minimal Actin Cortex by Coupling Actin Filaments to Reconstituted Membranes.
    Vogel SK
    Methods Mol Biol; 2016; 1365():213-23. PubMed ID: 26498787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-induced lever arm expansion allows myosin VI to walk with large and variable step sizes.
    Yu C; Lou J; Wu J; Pan L; Feng W; Zhang M
    J Biol Chem; 2012 Oct; 287(42):35021-35035. PubMed ID: 22936804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of Membrane-tethered Minimal Actin Cortices on Supported Lipid Bilayers.
    Köster DV; Bhat A; Talluri S; Mayor S
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35913196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity.
    Gurel PS; Kim LY; Ruijgrok PV; Omabegho T; Bryant Z; Alushin GM
    Elife; 2017 Dec; 6():. PubMed ID: 29199952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.