These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 31341289)
1. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Gurumurthy CB; Sato M; Nakamura A; Inui M; Kawano N; Islam MA; Ogiwara S; Takabayashi S; Matsuyama M; Nakagawa S; Miura H; Ohtsuka M Nat Protoc; 2019 Aug; 14(8):2452-2482. PubMed ID: 31341289 [TBL] [Abstract][Full Text] [Related]
2. Improved Genome Editing via Oviductal Nucleic Acids Delivery (i-GONAD): Protocol Steps and Additional Notes. Sato M; Nakamura A; Sekiguchi M; Matsuwaki T; Miura H; Gurumurthy CB; Kakuta S; Ohtsuka M Methods Mol Biol; 2023; 2631():325-340. PubMed ID: 36995675 [TBL] [Abstract][Full Text] [Related]
3. Sequential i-GONAD: An Improved In Vivo Technique for CRISPR/Cas9-Based Genetic Manipulations in Mice. Sato M; Miyagasako R; Takabayashi S; Ohtsuka M; Hatada I; Horii T Cells; 2020 Feb; 9(3):. PubMed ID: 32110989 [TBL] [Abstract][Full Text] [Related]
4. i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats. Takabayashi S; Aoshima T; Kabashima K; Aoto K; Ohtsuka M; Sato M Sci Rep; 2018 Aug; 8(1):12059. PubMed ID: 30104681 [TBL] [Abstract][Full Text] [Related]
5. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Ohtsuka M; Sato M; Miura H; Takabayashi S; Matsuyama M; Koyano T; Arifin N; Nakamura S; Wada K; Gurumurthy CB Genome Biol; 2018 Feb; 19(1):25. PubMed ID: 29482575 [TBL] [Abstract][Full Text] [Related]
6. Modification of Kobayashi Y; Aoshima T; Ito R; Shinmura R; Ohtsuka M; Akasaka E; Sato M; Takabayashi S Cells; 2020 Apr; 9(4):. PubMed ID: 32295056 [TBL] [Abstract][Full Text] [Related]
7. GONAD: A new method for germline genome editing in mice and rats. Namba M; Kobayashi T; Koyano T; Kohno M; Ohtsuka M; Matsuyama M Dev Growth Differ; 2021 Oct; 63(8):439-447. PubMed ID: 34432885 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. Chen S; Lee B; Lee AY; Modzelewski AJ; He L J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215 [TBL] [Abstract][Full Text] [Related]
9. Successful Takabayashi S; Iijima K; Tsujimura M; Aoshima T; Takagi H; Aoto K; Sato M Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142589 [TBL] [Abstract][Full Text] [Related]
10. GONAD: Genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice. Takahashi G; Gurumurthy CB; Wada K; Miura H; Sato M; Ohtsuka M Sci Rep; 2015 Jun; 5():11406. PubMed ID: 26096991 [TBL] [Abstract][Full Text] [Related]
11. i-GONAD: A method for generating genome-edited animals without ex vivo handling of embryos. Ohtsuka M; Sato M Dev Growth Differ; 2019 Jun; 61(5):306-315. PubMed ID: 31198998 [TBL] [Abstract][Full Text] [Related]
12. GONAD: A Novel CRISPR/Cas9 Genome Editing Method that Does Not Require Ex Vivo Handling of Embryos. Gurumurthy CB; Takahashi G; Wada K; Miura H; Sato M; Ohtsuka M Curr Protoc Hum Genet; 2016 Jan; 88():15.8.1-15.8.12. PubMed ID: 26724720 [TBL] [Abstract][Full Text] [Related]
13. Electroporation of AsCpf1/RNP at the Zygote Stage is an Efficient Genome Editing Method to Generate Knock-Out Mice Deficient in Leukemia Inhibitory Factor. Kim YS; Kim GR; Park M; Yang SC; Park SH; Won JE; Lee JH; Shin HE; Song H; Kim HR Tissue Eng Regen Med; 2020 Feb; 17(1):45-53. PubMed ID: 32002841 [TBL] [Abstract][Full Text] [Related]
14. Recent Advances in the Production of Genome-Edited Rats. Sato M; Nakamura S; Inada E; Takabayashi S Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269691 [TBL] [Abstract][Full Text] [Related]
15. A novel technique for large-fragment knock-in animal production without ex vivo handling of zygotes. Abe M; Nakatsukasa E; Natsume R; Hamada S; Sakimura K; Watabe AM; Ohtsuka T Sci Rep; 2023 Feb; 13(1):2245. PubMed ID: 36755180 [TBL] [Abstract][Full Text] [Related]
16. Generation of Mouse Model (KI and CKO) via Easi-CRISPR. Shola DTN; Yang C; Han C; Norinsky R; Peraza RD Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203 [TBL] [Abstract][Full Text] [Related]
17. Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes. Alghadban S; Bouchareb A; Hinch R; Hernandez-Pliego P; Biggs D; Preece C; Davies B Sci Rep; 2020 Oct; 10(1):17912. PubMed ID: 33087834 [TBL] [Abstract][Full Text] [Related]
18. Electroporation Delivery of Cas9 sgRNA Ribonucleoprotein-Mediated Genome Editing in Sheep IVF Zygotes. Pi W; Feng G; Liu M; Nie C; Chen C; Wang J; Wang L; Wan P; Liu C; Liu Y; Zhou P Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273092 [TBL] [Abstract][Full Text] [Related]
19. Gene editing in mouse zygotes using the CRISPR/Cas9 system. Wefers B; Bashir S; Rossius J; Wurst W; Kühn R Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886 [TBL] [Abstract][Full Text] [Related]
20. In vivo genome editing targeted towards the female reproductive system. Sato M; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S; Gurumurthy CB Arch Pharm Res; 2018 Sep; 41(9):898-910. PubMed ID: 29974342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]