These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31341534)

  • 21. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.
    Morrish F; Isern N; Sadilek M; Jeffrey M; Hockenbery DM
    Oncogene; 2009 Jul; 28(27):2485-91. PubMed ID: 19448666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.
    Wilde L; Roche M; Domingo-Vidal M; Tanson K; Philp N; Curry J; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):198-203. PubMed ID: 29248131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting MYC at the intersection between cancer metabolism and oncoimmunology.
    Venkatraman S; Balasubramanian B; Thuwajit C; Meller J; Tohtong R; Chutipongtanate S
    Front Immunol; 2024; 15():1324045. PubMed ID: 38390324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. c-Myc and cancer metabolism.
    Miller DM; Thomas SD; Islam A; Muench D; Sedoris K
    Clin Cancer Res; 2012 Oct; 18(20):5546-53. PubMed ID: 23071356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence from transgenic mice that myc regulates hepatic glycolysis.
    Valera A; Pujol A; Gregori X; Riu E; Visa J; Bosch F
    FASEB J; 1995 Aug; 9(11):1067-78. PubMed ID: 7649406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MYC, Metabolism, and Cancer.
    Stine ZE; Walton ZE; Altman BJ; Hsieh AL; Dang CV
    Cancer Discov; 2015 Oct; 5(10):1024-39. PubMed ID: 26382145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MYC and HIF in shaping immune response and immune metabolism.
    Gnanaprakasam JNR; Sherman JW; Wang R
    Cytokine Growth Factor Rev; 2017 Jun; 35():63-70. PubMed ID: 28363691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma.
    Tateishi K; Iafrate AJ; Ho Q; Curry WT; Batchelor TT; Flaherty KT; Onozato ML; Lelic N; Sundaram S; Cahill DP; Chi AS; Wakimoto H
    Clin Cancer Res; 2016 Sep; 22(17):4452-65. PubMed ID: 27076630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF.
    Matijevic Glavan T; Cipak Gasparovic A; Vérillaud B; Busson P; Pavelic J
    Mol Carcinog; 2017 Apr; 56(4):1214-1226. PubMed ID: 27805282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer.
    Li B; Simon MC
    Clin Cancer Res; 2013 Nov; 19(21):5835-41. PubMed ID: 23897900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamine deprivation counteracts hypoxia-induced chemoresistance.
    Wappler J; Arts M; Röth A; Heeren RMA; Peter Neumann U; Olde Damink SW; Soons Z; Cramer T
    Neoplasia; 2020 Jan; 22(1):22-32. PubMed ID: 31765939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PTTG regulates the metabolic switch of ovarian cancer cells via the c-myc pathway.
    Wang X; Duan W; Li X; Liu J; Li D; Ye L; Qian L; Yang A; Xu Q; Liu H; Fu Q; Wu E; Ma Q; Shen X
    Oncotarget; 2015 Dec; 6(38):40959-69. PubMed ID: 26516926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells.
    Trejo-Solís C; Castillo-Rodríguez RA; Serrano-García N; Silva-Adaya D; Vargas-Cruz S; Chávez-Cortéz EG; Gallardo-Pérez JC; Zavala-Vega S; Cruz-Salgado A; Magaña-Maldonado R
    Metabolites; 2024 Apr; 14(5):. PubMed ID: 38786726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance.
    Chen X; Chen S; Yu D
    Metabolites; 2020 Jul; 10(7):. PubMed ID: 32708822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction.
    Fogal V; Babic I; Chao Y; Pastorino S; Mukthavaram R; Jiang P; Cho YJ; Pingle SC; Crawford JR; Piccioni DE; Kesari S
    Oncotarget; 2015 Jan; 6(2):1157-70. PubMed ID: 25528767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MYC in oncogenesis and as a target for cancer therapies.
    Albihn A; Johnsen JI; Henriksson MA
    Adv Cancer Res; 2010; 107():163-224. PubMed ID: 20399964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycometabolic adaptation mediates the insensitivity of drug-resistant K562/ADM leukaemia cells to adriamycin via the AKT-mTOR/c-Myc signalling pathway.
    Zhang X; Ai Z; Chen J; Yi J; Liu Z; Zhao H; Wei H
    Mol Med Rep; 2017 Apr; 15(4):1869-1876. PubMed ID: 28259993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of glucose uptake in lymphoma cell lines by c-MYC- and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability.
    Broecker-Preuss M; Becher-Boveleth N; Bockisch A; Dührsen U; Müller S
    J Transl Med; 2017 Jul; 15(1):158. PubMed ID: 28724379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.