These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31341544)

  • 41. Telerehabilitation technologies: accessibility and usability.
    Pramuka M; van Roosmalen L
    Int J Telerehabil; 2009; 1(1):85-98. PubMed ID: 25945165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A virtual-reality-based telerehabilitation system with force feedback.
    Popescu VG; Burdea GC; Bouzit M; Hentz VR
    IEEE Trans Inf Technol Biomed; 2000 Mar; 4(1):45-51. PubMed ID: 10761773
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of Algorithms for Haptic Interaction With Isosurfaces Extracted From Volumetric Datasets.
    Rizzi SH; Luciano CJ; Pat Banerjee P
    J Comput Inf Sci Eng; 2012 Jun; 12(2):21004-NaN. PubMed ID: 24891842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Barriers to telemedicine: survey of current users in acute care units.
    Rogove HJ; McArthur D; Demaerschalk BM; Vespa PM
    Telemed J E Health; 2012; 18(1):48-53. PubMed ID: 22082107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distributed haptic interactions with physically based 3D deformable models over lossy networks.
    Tang Z; Yang Y; Guo X; Prabhakaran B
    IEEE Trans Haptics; 2013; 6(4):417-28. PubMed ID: 24808394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Telerehabilitation: current perspectives.
    Theodoros D; Russell T
    Stud Health Technol Inform; 2008; 131():191-209. PubMed ID: 18431862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developing a synchronous otolaryngology telemedicine Clinic: Prospective study to assess fidelity and diagnostic concordance.
    Seim NB; Philips RHW; Matrka LA; Locklear B; Inman M; Moberly AC; Essig GF
    Laryngoscope; 2018 May; 128(5):1068-1074. PubMed ID: 29076534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exercise recognition for Kinect-based telerehabilitation.
    Antón D; Goñi A; Illarramendi A
    Methods Inf Med; 2015; 54(2):145-55. PubMed ID: 25301322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Creating Realistic Virtual Textures from Contact Acceleration Data.
    Romano JM; Kuchenbecker KJ
    IEEE Trans Haptics; 2012; 5(2):109-19. PubMed ID: 26964067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of telerehabilitation application with designated consultation categories.
    Tan KK; Narayanan AS; Koh GC; Kyaw KK; Hoenig HM
    J Rehabil Res Dev; 2014; 51(9):1383-96. PubMed ID: 25785371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial.
    Lloréns R; Noé E; Colomer C; Alcañiz M
    Arch Phys Med Rehabil; 2015 Mar; 96(3):418-425.e2. PubMed ID: 25448245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tele-Immersive medical educational environment.
    Ai Z; Dech F; Silverstein J; Rasmussen M
    Stud Health Technol Inform; 2002; 85():24-30. PubMed ID: 15458055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical outcomes of remote asynchronous telerehabilitation are equivalent to traditional therapy following total knee arthroplasty: A randomized control study.
    Bini SA; Mahajan J
    J Telemed Telecare; 2017 Feb; 23(2):239-247. PubMed ID: 26940798
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Virtual Reality, Augmented Reality, Gamification, and Telerehabilitation: Psychological Impact on Orthopedic Patients' Rehabilitation.
    Berton A; Longo UG; Candela V; Fioravanti S; Giannone L; Arcangeli V; Alciati V; Berton C; Facchinetti G; Marchetti A; Schena E; De Marinis MG; Denaro V
    J Clin Med; 2020 Aug; 9(8):. PubMed ID: 32784745
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality.
    Eck U; Pankratz F; Sandor C; Klinker G; Laga H
    IEEE Trans Vis Comput Graph; 2015 Dec; 21(12):1427-41. PubMed ID: 26394430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of tele-ICU system requirements using a content validity assessment.
    Larinkari S; Liisanantti JH; Ala-Lääkkölä T; Meriläinen M; Kyngäs H; Ala-Kokko T
    Int J Med Inform; 2016 Feb; 86():30-6. PubMed ID: 26725692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Telemedicine evaluation of acute burns is accurate and cost-effective.
    Saffle JR; Edelman L; Theurer L; Morris SE; Cochran A
    J Trauma; 2009 Aug; 67(2):358-65. PubMed ID: 19667890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MH-Pen: A Pen-Type Multi-Mode Haptic Interface for Touch Screens Interaction.
    Chen D; Song A; Tian L; Yu Y; Zhu L
    IEEE Trans Haptics; 2018; 11(4):555-567. PubMed ID: 29993931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of a modified treatment-based classification system for subgrouping patients with low back pain: Agreement between telerehabilitation and face-to-face assessments.
    Peterson S; Kuntz C; Roush J
    Physiother Theory Pract; 2019 Nov; 35(11):1078-1086. PubMed ID: 29723124
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.