BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 31341890)

  • 1. Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer.
    Hou W; Hu S; Li C; Ma H; Wang Q; Meng G; Guo T; Zhang J
    Biomed Res Int; 2019; 2019():2025636. PubMed ID: 31341890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells.
    Wohnhaas CT; Gindele JA; Kiechle T; Shen Y; Leparc GG; Stierstorfer B; Stahl H; Gantner F; Viollet C; Schymeinsky J; Baum P
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Akt/PKB signaling regulates cigarette smoke-induced pulmonary epithelial-mesenchymal transition.
    Jiang B; Guan Y; Shen HJ; Zhang LH; Jiang JX; Dong XW; Shen HH; Xie QM
    Lung Cancer; 2018 Aug; 122():44-53. PubMed ID: 30032844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of epithelial-mesenchymal transitions in COPD induced by cigarette smoke: an update.
    Su X; Wu W; Zhu Z; Lin X; Zeng Y
    Respir Res; 2022 Aug; 23(1):225. PubMed ID: 36045410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cigarette smoke preparations, not electronic nicotine delivery system preparations, induce features of lung disease in a 3D lung repeat-dose model.
    Rayner RE; Makena P; Prasad GL; Cormet-Boyaka E
    Am J Physiol Lung Cell Mol Physiol; 2021 Feb; 320(2):L276-L287. PubMed ID: 33207918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA repair as an emerging target for COPD-lung cancer overlap.
    Sears CR
    Respir Investig; 2019 Mar; 57(2):111-121. PubMed ID: 30630751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure.
    Aghapour M; Raee P; Moghaddam SJ; Hiemstra PS; Heijink IH
    Am J Respir Cell Mol Biol; 2018 Feb; 58(2):157-169. PubMed ID: 28933915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Relevance of the Mouse Cigarette Smoke Model of COPD: Peering through the Smoke.
    Vandivier RW; Ghosh M
    Am J Respir Cell Mol Biol; 2017 Jul; 57(1):3-4. PubMed ID: 28665224
    [No Abstract]   [Full Text] [Related]  

  • 9. Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD.
    Roscioli E; Hamon R; Lester SE; Jersmann HPA; Reynolds PN; Hodge S
    Respir Res; 2018 Nov; 19(1):234. PubMed ID: 30486816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease.
    Liu Q; Li H; Wang Q; Zhang Y; Wang W; Dou S; Xiao W
    Respir Res; 2016 Nov; 17(1):159. PubMed ID: 27887617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular links between COPD and lung cancer: new targets for drug discovery?
    Caramori G; Ruggeri P; Mumby S; Ieni A; Lo Bello F; Chimankar V; Donovan C; Andò F; Nucera F; Coppolino I; Tuccari G; Hansbro PM; Adcock IM
    Expert Opin Ther Targets; 2019 Jun; 23(6):539-553. PubMed ID: 31079559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities.
    Eapen MS; Hansbro PM; Larsson-Callerfelt AK; Jolly MK; Myers S; Sharma P; Jones B; Rahman MA; Markos J; Chia C; Larby J; Haug G; Hardikar A; Weber HC; Mabeza G; Cavalheri V; Khor YH; McDonald CF; Sohal SS
    Drugs; 2018 Nov; 78(16):1717-1740. PubMed ID: 30392114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model.
    Liu X; Ma C; Wang X; Wang W; Li Z; Wang X; Wang P; Sun W; Xue B
    Int J Chron Obstruct Pulmon Dis; 2017; 12():1309-1324. PubMed ID: 28496315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor (TGF) β
    Mahmood MQ; Reid D; Ward C; Muller HK; Knight DA; Sohal SS; Walters EH
    Respirology; 2017 Jan; 22(1):133-140. PubMed ID: 27614607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What can in vitro models of COPD tell us?
    Krimmer DI; Oliver BG
    Pulm Pharmacol Ther; 2011 Oct; 24(5):471-7. PubMed ID: 21182977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD).
    Sohal SS
    Respir Investig; 2017 Mar; 55(2):104-113. PubMed ID: 28274525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inflammatory cells and chronic obstructive pulmonary disease.
    Tetley TD
    Curr Drug Targets Inflamm Allergy; 2005 Dec; 4(6):607-18. PubMed ID: 17305517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease.
    Easter M; Bollenbecker S; Barnes JW; Krick S
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32967225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current concepts on the role of inflammation in COPD and lung cancer.
    Yao H; Rahman I
    Curr Opin Pharmacol; 2009 Aug; 9(4):375-83. PubMed ID: 19615942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute Respiratory Barrier Disruption by Ozone Exposure in Mice.
    Sokolowska M; Quesniaux VFJ; Akdis CA; Chung KF; Ryffel B; Togbe D
    Front Immunol; 2019; 10():2169. PubMed ID: 31608051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.