These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31342132)
1. Prevention of Oxidative Damage and Phytoremediation of Cr(VI) by Chromium(VI) Reducing Bacillus subtilus PAW3 in Cowpea Plants. Wani PA; Garba SH; Wahid S; Hussaini NA; Mashood KA Bull Environ Contam Toxicol; 2019 Sep; 103(3):476-483. PubMed ID: 31342132 [TBL] [Abstract][Full Text] [Related]
2. IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium. Shim J; Kim JW; Shea PJ; Oh BT J Basic Microbiol; 2015 May; 55(5):652-8. PubMed ID: 25283159 [TBL] [Abstract][Full Text] [Related]
3. Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. Seleiman MF; Ali S; Refay Y; Rizwan M; Alhammad BA; El-Hendawy SE Chemosphere; 2020 Jul; 250():126239. PubMed ID: 32088619 [TBL] [Abstract][Full Text] [Related]
4. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr Bruno LB; Karthik C; Ma Y; Kadirvelu K; Freitas H; Rajkumar M Chemosphere; 2020 Apr; 244():125521. PubMed ID: 31812764 [TBL] [Abstract][Full Text] [Related]
5. Plant growth promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains. Javaid M; Sultan S J Basic Microbiol; 2013 May; 53(5):420-8. PubMed ID: 22736528 [TBL] [Abstract][Full Text] [Related]
6. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Karthik C; Elangovan N; Kumar TS; Govindharaju S; Barathi S; Oves M; Arulselvi PI Microbiol Res; 2017 Nov; 204():65-71. PubMed ID: 28870293 [TBL] [Abstract][Full Text] [Related]
7. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Shreya D; Jinal HN; Kartik VP; Amaresan N Arch Microbiol; 2020 May; 202(4):887-894. PubMed ID: 31893290 [TBL] [Abstract][Full Text] [Related]
8. Biochemical traits of Bacillus subtilis MF497446: Its implications on the development of cowpea under cadmium stress and ensuring food safety. El-Nahrawy S; Elhawat N; Alshaal T Ecotoxicol Environ Saf; 2019 Sep; 180():384-395. PubMed ID: 31103858 [TBL] [Abstract][Full Text] [Related]
10. In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Soni SK; Singh R; Awasthi A; Singh M; Kalra A Environ Sci Pollut Res Int; 2013 Mar; 20(3):1661-74. PubMed ID: 22983604 [TBL] [Abstract][Full Text] [Related]
11. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Saif S; Khan MS Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936 [TBL] [Abstract][Full Text] [Related]
12. Reclamation of chromium-contaminated soil by native Cr(VI)-reducing and PHA-accumulating Bacillus aryabhattai CTSI-07. Pattnaik S; Dash D; Mohapatra S; Pati S; Devadarshini D; Samal S; Pattnaik M; Maity S; Mishra SK; Samantaray D Int Microbiol; 2024 Jun; 27(3):731-742. PubMed ID: 37676443 [TBL] [Abstract][Full Text] [Related]
13. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. Tan H; Wang C; Zeng G; Luo Y; Li H; Xu H J Hazard Mater; 2020 Mar; 386():121628. PubMed ID: 31744729 [TBL] [Abstract][Full Text] [Related]
14. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Mahmud JA; Hasanuzzaman M; Nahar K; Rahman A; Hossain MS; Fujita M Ecotoxicol Environ Saf; 2017 Oct; 144():216-226. PubMed ID: 28624590 [TBL] [Abstract][Full Text] [Related]
15. Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Wani PA; Khan MS; Zaidi A Curr Microbiol; 2007 Mar; 54(3):237-43. PubMed ID: 17294325 [TBL] [Abstract][Full Text] [Related]
16. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Das S; Mishra J; Das SK; Pandey S; Rao DS; Chakraborty A; Sudarshan M; Das N; Thatoi H Chemosphere; 2014 Feb; 96():112-21. PubMed ID: 24091247 [TBL] [Abstract][Full Text] [Related]
17. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. Camargo FA; Bento FM; Okeke BC; Frankenberger WT J Environ Qual; 2003; 32(4):1228-33. PubMed ID: 12931876 [TBL] [Abstract][Full Text] [Related]
18. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Camargo FA; Okeke BC; Bento FM; Frankenberger WT Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):569-73. PubMed ID: 12679851 [TBL] [Abstract][Full Text] [Related]
19. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Pattnaik S; Dash D; Mohapatra S; Pattnaik M; Marandi AK; Das S; Samantaray DP Chemosphere; 2020 Feb; 240():124895. PubMed ID: 31550588 [TBL] [Abstract][Full Text] [Related]
20. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Masood F; Malik A Bull Environ Contam Toxicol; 2011 Jan; 86(1):114-9. PubMed ID: 21181113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]