These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 31342179)
1. Supercell calculations of the geometry and lattice energy of α-glycine crystal. Xavier NF; Da Silva AM; Bauerfeldt GF J Mol Model; 2019 Jul; 25(8):244. PubMed ID: 31342179 [TBL] [Abstract][Full Text] [Related]
2. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. Kruse H; Grimme S J Chem Phys; 2012 Apr; 136(15):154101. PubMed ID: 22519309 [TBL] [Abstract][Full Text] [Related]
3. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes. Vícha J; Patzschke M; Marek R Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437 [TBL] [Abstract][Full Text] [Related]
4. A theoretical investigation of the low energy conformers of the isomers glycine and methylcarbamic acid and their role in the interstellar medium. Kayi H; Kaiser RI; Head JD Phys Chem Chem Phys; 2011 Sep; 13(35):15774-84. PubMed ID: 21687849 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. Dohm S; Hansen A; Steinmetz M; Grimme S; Checinski MP J Chem Theory Comput; 2018 May; 14(5):2596-2608. PubMed ID: 29565586 [TBL] [Abstract][Full Text] [Related]
6. A comparison of three DFT exchange-correlation functionals and two basis sets for the prediction of the conformation distribution of hydrated polyglycine. Yuan Y; Wang F J Chem Phys; 2021 Sep; 155(9):094104. PubMed ID: 34496578 [TBL] [Abstract][Full Text] [Related]
7. A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid--from water clusters to interstellar ices. Kayi H; Kaiser RI; Head JD Phys Chem Chem Phys; 2012 Apr; 14(14):4942-58. PubMed ID: 22382393 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds. Xu X; Truhlar DG J Chem Theory Comput; 2011 Sep; 7(9):2766-79. PubMed ID: 26605468 [TBL] [Abstract][Full Text] [Related]
9. Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study. Darvish Ganji M; Hosseini-Khah SM; Amini-Tabar Z Phys Chem Chem Phys; 2015 Jan; 17(4):2504-11. PubMed ID: 25490973 [TBL] [Abstract][Full Text] [Related]
10. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals. Xu X; Truhlar DG J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870 [TBL] [Abstract][Full Text] [Related]
11. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351 [TBL] [Abstract][Full Text] [Related]
12. Quantum chemical modeling of the thermodynamics of the formation of Au(III), Pd(II), and Pt(II) chloride complexes. Petrov AI J Mol Model; 2022 Nov; 28(12):391. PubMed ID: 36394653 [TBL] [Abstract][Full Text] [Related]
13. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections. Khvostichenko D; Choi A; Boulatov R J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545 [TBL] [Abstract][Full Text] [Related]
14. Can Contemporary Density Functional Theory Predict Energy Spans in Molecular Catalysis Accurately Enough To Be Applicable for in Silico Catalyst Design? A Computational/Experimental Case Study for the Ruthenium-Catalyzed Hydrogenation of Olefins. Rohmann K; Hölscher M; Leitner W J Am Chem Soc; 2016 Jan; 138(1):433-43. PubMed ID: 26713773 [TBL] [Abstract][Full Text] [Related]
15. Computational studies on the possible formation of glycine Thripati S Org Biomol Chem; 2022 May; 20(20):4189-4203. PubMed ID: 35543204 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking Density Functionals, Basis Sets, and Solvent Models in Predicting Thermodynamic Hydricities of Organic Hydrides. Yeo C; Nguyen M; Wang LP J Phys Chem A; 2022 Oct; 126(42):7566-7577. PubMed ID: 36251007 [TBL] [Abstract][Full Text] [Related]
17. Complex formation of Sn(II) with glycine: an IR, DTA/TGA and DFT investigation. Novikova GV; Petrov AI; Staloverova NA; Samoilo AS; Dergachev ID; Shubin AA Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():491-7. PubMed ID: 25123937 [TBL] [Abstract][Full Text] [Related]
18. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Hellweg A; Rappoport D Phys Chem Chem Phys; 2015 Jan; 17(2):1010-7. PubMed ID: 25410795 [TBL] [Abstract][Full Text] [Related]
19. Force field for molecular dynamics studies of glycine/water mixtures in crystal/solution environments. Gnanasambandam S; Hu Z; Jiang J; Rajagopalan R J Phys Chem B; 2009 Jan; 113(3):752-8. PubMed ID: 19115812 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Hybrid Theoretical Approaches for Structural Determination of a Glycine-Linked Cisplatin Derivative via Infrared Multiple Photon Dissociation (IRMPD) Action Spectroscopy. He CC; Kimutai B; Bao X; Hamlow L; Zhu Y; Strobehn SF; Gao J; Berden G; Oomens J; Chow CS; Rodgers MT J Phys Chem A; 2015 Nov; 119(44):10980-7. PubMed ID: 26473433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]