These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31342430)
1. Binding Free Energies of Conformationally Disordered Peptides Through Extensive Sampling and End-Point Methods. Nixon MG; Fadda E Methods Mol Biol; 2019; 2039():229-242. PubMed ID: 31342430 [TBL] [Abstract][Full Text] [Related]
2. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. Wang J; Hou T J Chem Inf Model; 2012 May; 52(5):1199-212. PubMed ID: 22497310 [TBL] [Abstract][Full Text] [Related]
3. How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations? Hao D; He X; Ji B; Zhang S; Wang J J Chem Inf Model; 2020 Dec; 60(12):6624-6633. PubMed ID: 33213150 [TBL] [Abstract][Full Text] [Related]
4. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3. He X; Man VH; Ji B; Xie XQ; Wang J J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199 [TBL] [Abstract][Full Text] [Related]
5. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Genheden S; Ryde U Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991 [TBL] [Abstract][Full Text] [Related]
6. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Hou T; Wang J; Li Y; Wang W J Chem Inf Model; 2011 Jan; 51(1):69-82. PubMed ID: 21117705 [TBL] [Abstract][Full Text] [Related]
7. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. Gohlke H; Case DA J Comput Chem; 2004 Jan; 25(2):238-50. PubMed ID: 14648622 [TBL] [Abstract][Full Text] [Related]
8. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Wang E; Sun H; Wang J; Wang Z; Liu H; Zhang JZH; Hou T Chem Rev; 2019 Aug; 119(16):9478-9508. PubMed ID: 31244000 [TBL] [Abstract][Full Text] [Related]
9. Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions. Mishra SK; Koča J J Phys Chem B; 2018 Aug; 122(34):8113-8121. PubMed ID: 30084252 [TBL] [Abstract][Full Text] [Related]
10. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Sun H; Duan L; Chen F; Liu H; Wang Z; Pan P; Zhu F; Zhang JZH; Hou T Phys Chem Chem Phys; 2018 May; 20(21):14450-14460. PubMed ID: 29785435 [TBL] [Abstract][Full Text] [Related]
11. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Ferrari AM; Degliesposti G; Sgobba M; Rastelli G Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536 [TBL] [Abstract][Full Text] [Related]
12. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142 [TBL] [Abstract][Full Text] [Related]
13. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. Oehme DP; Brownlee RT; Wilson DJ J Comput Chem; 2012 Dec; 33(32):2566-80. PubMed ID: 22915442 [TBL] [Abstract][Full Text] [Related]
14. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations. Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253 [TBL] [Abstract][Full Text] [Related]
15. Towards predictive ligand design with free-energy based computational methods? Foloppe N; Hubbard R Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725 [TBL] [Abstract][Full Text] [Related]
16. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Genheden S; Ryde U Expert Opin Drug Discov; 2015 May; 10(5):449-61. PubMed ID: 25835573 [TBL] [Abstract][Full Text] [Related]
17. Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Singh N; Warshel A Proteins; 2010 May; 78(7):1705-23. PubMed ID: 20186976 [TBL] [Abstract][Full Text] [Related]
18. Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646 [TBL] [Abstract][Full Text] [Related]
19. Uni-GBSA: an open-source and web-based automatic workflow to perform MM/GB(PB)SA calculations for virtual screening. Yang M; Bo Z; Xu T; Xu B; Wang D; Zheng H Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328705 [TBL] [Abstract][Full Text] [Related]
20. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L; Chambers J; Abel R Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]