BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 31342691)

  • 1. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial resolution in dynamic optical coherence elastography.
    Kirby MA; Zhou K; Pitre JJ; Gao L; Li D; Pelivanov I; Song S; Li C; Huang Z; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Sep; 24(9):1-16. PubMed ID: 31535538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography.
    Zhu J; Yu J; Qu Y; He Y; Li Y; Yang Q; Huo T; He X; Chen Z
    Opt Lett; 2018 May; 43(10):2388-2391. PubMed ID: 29762599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
    Ramier A; Tavakol B; Yun SH
    Opt Express; 2019 Jun; 27(12):16635-16649. PubMed ID: 31252887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D mapping of elastic modulus using shear wave optical micro-elastography.
    Zhu J; Qi L; Miao Y; Ma T; Dai C; Qu Y; He Y; Gao Y; Zhou Q; Chen Z
    Sci Rep; 2016 Oct; 6():35499. PubMed ID: 27762276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of iris elasticity using acoustic radiation force optical coherence elastography.
    Zhu Y; Zhang Y; Shi G; Xue Q; Han X; Ai S; Shi J; Xie C; He X
    Appl Opt; 2020 Dec; 59(34):10739-10745. PubMed ID: 33361893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography.
    Song S; Huang Z; Nguyen TM; Wong EY; Arnal B; O'Donnell M; Wang RK
    J Biomed Opt; 2013 Dec; 18(12):121509. PubMed ID: 24213539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study.
    Han Z; Li J; Singh M; Wu C; Liu CH; Wang S; Idugboe R; Raghunathan R; Sudheendran N; Aglyamov SR; Twa MD; Larin KV
    Phys Med Biol; 2015 May; 60(9):3531-47. PubMed ID: 25860076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo measurement of shear modulus of the human cornea using optical coherence elastography.
    Ramier A; Eltony AM; Chen Y; Clouser F; Birkenfeld JS; Watts A; Yun SH
    Sci Rep; 2020 Oct; 10(1):17366. PubMed ID: 33060714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence elastography to evaluate depth-resolved elasticity of tissue.
    Yang C; Xiang Z; Li Z; Nan N; Wang X
    Opt Express; 2022 Mar; 30(6):8709-8722. PubMed ID: 35299317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo.
    Li J; Wang S; Manapuram RK; Singh M; Menodiado FM; Aglyamov S; Emelianov S; Twa MD; Larin KV
    J Biomed Opt; 2013 Dec; 18(12):121503. PubMed ID: 24089292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation.
    Han Z; Aglyamov SR; Li J; Singh M; Wang S; Vantipalli S; Wu C; Liu CH; Twa MD; Larin KV
    J Biomed Opt; 2015 Feb; 20(2):20501. PubMed ID: 25649624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Optical Coherence Elastography Unveils Spatial Variation of Human Corneal Stiffness.
    Li GY; Feng X; Yun SH
    IEEE Trans Biomed Eng; 2024 May; 71(5):1418-1429. PubMed ID: 38032780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of 1-D transient elastography for the shear modulus assessment of thin-layered soft tissue: comparison with supersonic shear imaging technique.
    Brum J; Gennisson JL; Nguyen TM; Benech N; Fink M; Tanter M; Negreira C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):703-14. PubMed ID: 22547281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography.
    Singh M; Han Z; Li J; Vantipalli S; Aglyamov SR; Twa MD; Larin KV
    J Cataract Refract Surg; 2018 Aug; 44(8):1023-1031. PubMed ID: 30049567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for shear wave speed estimation in shear wave elastography.
    Engel AJ; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2106-14. PubMed ID: 26670851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea.
    Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ
    J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography.
    Nguyen TM; Song S; Arnal B; Huang Z; O'Donnell M; Wang RK
    Opt Lett; 2014 Feb; 39(4):838-41. PubMed ID: 24562220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.