BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31342773)

  • 1. Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (
    Guo Z; Gao Y; Cao X; Jiang W; Liu X; Liu Q; Chen Z; Zhou W; Cui J; Wang Q
    Int J Phytoremediation; 2019; 21(14):1486-1496. PubMed ID: 31342773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.
    Wang Q; Gu M; Ma X; Zhang H; Wang Y; Cui J; Gao W; Gui J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16758-71. PubMed ID: 26092360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching.
    Shrestha P; Bellitürk K; Görres JH
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India.
    Arora K; Sharma S; Monti A
    Int J Phytoremediation; 2016; 18(7):704-9. PubMed ID: 26696008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.).
    Afzal S; Begum N; Zhao H; Fang Z; Lou L; Cai Q
    J Appl Microbiol; 2017 Aug; 123(2):498-510. PubMed ID: 28581636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using chemical fractionation to evaluate the phytoextraction of cadmium by switchgrass from Cd-contaminated soils.
    Chen BC; Lai HY; Lee DY; Juang KW
    Ecotoxicology; 2011 Mar; 20(2):409-18. PubMed ID: 21312028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid.
    Aderholt M; Vogelien DL; Koether M; Greipsson S
    Chemosphere; 2017 May; 175():85-96. PubMed ID: 28211339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrial hemp (Cannabis sativa L.)-a valuable alternative crop for growing in agricultural soils contaminated with heavy metals.
    Flajšman M; Košmelj K; Grčman H; Ačko DK; Zupan M
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):115414-115429. PubMed ID: 37884708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation potential of Cd and Pb-contaminated soils by
    Salas-Moreno M; Marrugo-Negrete J
    Int J Phytoremediation; 2020; 22(1):87-97. PubMed ID: 31359781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass.
    Chen BC; Lai HY; Juang KW
    Ecotoxicol Environ Saf; 2012 Jun; 80():393-400. PubMed ID: 22541831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.
    Mani D; Kumar C; Patel NK
    Ecotoxicol Environ Saf; 2016 Feb; 124():435-446. PubMed ID: 26615479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cd and pb Co-Pollution Increased Ecological Risk and Changed Rhizosphere Characteristics of Arabidopsis Thaliana During Phytoremediation.
    Jia Y; Jiang X; Xu J; Cao M; Luo J
    Bull Environ Contam Toxicol; 2022 May; 108(5):909-916. PubMed ID: 35234979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [DA-6 and GLDA Enhanced
    Wang Z; Sun ZJ; Sameh M; Wang Z; He J; Han L
    Huan Jing Ke Xue; 2020 Dec; 41(12):5589-5599. PubMed ID: 33374076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil.
    Xu J; Cai Q; Wang H; Liu X; Lv J; Yao D; Lu Y; Li W; Liu Y
    Environ Monit Assess; 2017 May; 189(5):224. PubMed ID: 28432507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The capacity of switchgrass (Panicum virgatum) to degrade atrazine in a phytoremediation setting.
    Murphy IJ; Coats JR
    Environ Toxicol Chem; 2011 Mar; 30(3):715-22. PubMed ID: 21154841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG.
    Hu X; Liu X; Zhang X; Cao L; Chen J; Yu H
    Chemosphere; 2017 Dec; 188():397-402. PubMed ID: 28898773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Validation of Reference Genes for RT-qPCR Analysis in Switchgrass under Heavy Metal Stresses.
    Zhao J; Zhou M; Meng Y
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32375288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead - A review.
    Gul I; Manzoor M; Hashim N; Shah GM; Waani SPT; Shahid M; Antoniadis V; Rinklebe J; Arshad M
    Environ Pollut; 2021 Oct; 287():117667. PubMed ID: 34426392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb.
    Gonçalves AC; Schwantes D; Braga de Sousa RF; Benetoli da Silva TR; Guimarães VF; Campagnolo MA; Soares de Vasconcelos E; Zimmermann J
    J Environ Manage; 2020 May; 262():110342. PubMed ID: 32250818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Myagrum perfoliatum and Sophora alopecuroides in phytoremediation of Cd- and Pb-contaminated soils: A chemical and biological investigation.
    Cheraghi-Aliakbari S; Beheshti-Alagha A; Ranjbar F; Nosratti I
    Chemosphere; 2020 Nov; 259():127450. PubMed ID: 32593006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.