These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31342922)

  • 1. Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging.
    Ozaslan AA; Alacaoglu A; Demirel OB; Çukur T; Saritas EU
    Phys Med Biol; 2019 Aug; 64(16):165018. PubMed ID: 31342922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectory analysis for field free line magnetic particle imaging.
    Top CB; Güngör A; Ilbey S; Güven HE
    Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging.
    Werner F; Gdaniec N; Knopp T
    Phys Med Biol; 2017 May; 62(9):3407-3421. PubMed ID: 28218613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying the uniform resampling (URS) algorithm to a lissajous trajectory: fast image reconstruction with optimal gridding.
    Moriguchi H; Wendt M; Duerk JL
    Magn Reson Med; 2000 Nov; 44(5):766-81. PubMed ID: 11064412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of time domain-system matrix and x-space methods to reconstruct magnetic particle images with isotropic resolution.
    Shan S; Zhang C; Yin L; Yang X; Yu D; Qi Y; Li M; Wildgruber M; Du Y; Tian J; Ma X
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38168021
    [No Abstract]   [Full Text] [Related]  

  • 6. Partial FOV Center Imaging (PCI): A Robust X-Space Image Reconstruction for Magnetic Particle Imaging.
    Kurt S; Muslu Y; Saritas EU
    IEEE Trans Med Imaging; 2020 Nov; 39(11):3441-3450. PubMed ID: 32746094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial fourier shells trajectory for non-cartesian MRI.
    Tao S; Shu Y; Trzasko JD; Huston J; Bernstein MA
    Phys Med Biol; 2019 Feb; 64(4):04NT01. PubMed ID: 30625455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.
    Benkert T; Tian Y; Huang C; DiBella EVR; Chandarana H; Feng L
    Magn Reson Med; 2018 Jul; 80(1):286-293. PubMed ID: 29193380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of undersampled non-Cartesian data sets using pseudo-Cartesian GRAPPA in conjunction with GROG.
    Seiberlich N; Breuer F; Heidemann R; Blaimer M; Griswold M; Jakob P
    Magn Reson Med; 2008 May; 59(5):1127-37. PubMed ID: 18429026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality.
    Shen Y; Zhang L; Hui H; Guo L; Wang T; Yang G; Tian J
    Comput Methods Programs Biomed; 2024 Jul; 252():108250. PubMed ID: 38815547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Equispaced System Matrix Acquisition for Magnetic Particle Imaging Based on Lissajous Node Points.
    Kaethner C; Erb W; Ahlborg M; Szwargulski P; Knopp T; Buzug TM
    IEEE Trans Med Imaging; 2016 Nov; 35(11):2476-2485. PubMed ID: 27323359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Varying kernel-extent gridding reconstruction for undersampled variable-density spirals.
    Cukur T; Santos JM; Nishimura DG; Pauly JM
    Magn Reson Med; 2008 Jan; 59(1):196-201. PubMed ID: 18050316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG).
    Seiberlich N; Breuer FA; Blaimer M; Barkauskas K; Jakob PM; Griswold MA
    Magn Reson Med; 2007 Dec; 58(6):1257-65. PubMed ID: 17969027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient gridding reconstruction method for multishot non-Cartesian imaging with correction of off-resonance artifacts.
    Meng Y; Lei H
    Magn Reson Med; 2010 Jun; 63(6):1691-7. PubMed ID: 20512873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a general framework for fast and feasible k-space trajectories for MRI based on projection methods.
    Sharma S; Coutino M; Chepuri SP; Leus G; Hari KVS
    Magn Reson Imaging; 2020 Oct; 72():122-134. PubMed ID: 32668272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Prototyping of Two-Dimensional Non-Cartesian K-Space Trajectories (ROCKET) Using Pulseq and Graphical Programming Interface.
    Poojar P; Geethanath S; Reddy AK; Venkatesan R
    Crit Rev Biomed Eng; 2019; 47(4):349-363. PubMed ID: 31679263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An augmented Lagrangian based compressed sensing reconstruction for non-Cartesian magnetic resonance imaging without gridding and regridding at every iteration.
    Akçakaya M; Nam S; Basha TA; Kawaji K; Tarokh V; Nezafat R
    PLoS One; 2014; 9(9):e107107. PubMed ID: 25215945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based reconstruction for magnetic particle imaging.
    Knopp T; Sattel TF; Biederer S; Rahmer J; Weizenecker J; Gleich B; Borgert J; Buzug TM
    IEEE Trans Med Imaging; 2010 Jan; 29(1):12-8. PubMed ID: 19435678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional x-space magnetic particle imaging.
    Goodwill PW; Conolly SM
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1581-90. PubMed ID: 21402508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K-space trajectory mapping and its application for ultrashort Echo time imaging.
    Latta P; Starčuk Z; Gruwel ML; Weber MH; Tomanek B
    Magn Reson Imaging; 2017 Feb; 36():68-76. PubMed ID: 27742433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.