These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31342936)

  • 41. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.
    Ge MZ; Cao CY; Li SH; Tang YX; Wang LN; Qi N; Huang JY; Zhang KQ; Al-Deyab SS; Lai YK
    Nanoscale; 2016 Mar; 8(9):5226-34. PubMed ID: 26878901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting.
    Zhang Z; Zhang L; Hedhili MN; Zhang H; Wang P
    Nano Lett; 2013 Jan; 13(1):14-20. PubMed ID: 23205530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L; Zhou X; Nguyen NT; Schmuki P
    ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced light trapping and high charge transmission capacities of novel structures for efficient photoelectrochemical water splitting.
    Mu J; Miao H; Liu E; Feng J; Teng F; Zhang D; Kou Y; Jin Y; Fan J; Hu X
    Nanoscale; 2018 Jul; 10(25):11881-11893. PubMed ID: 29897080
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays.
    Kim HJ; Lee SH; Upadhye AA; Ro I; Tejedor-Tejedor MI; Anderson MA; Kim WB; Huber GW
    ACS Nano; 2014 Oct; 8(10):10756-65. PubMed ID: 25268767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of α-Bi
    Pang Y; Xu G; Feng Q; Liu J; Lv J; Zhang Y; Wu Y
    Langmuir; 2017 Sep; 33(36):8933-8942. PubMed ID: 28783435
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO
    He W; Cai J; Jiang X; Yin JJ; Meng Q
    Phys Chem Chem Phys; 2018 Jun; 20(23):16117-16125. PubMed ID: 29855003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of Temperature Reaction for the CdSe-TiO
    Lai CW; Samsudin NA; Low FW; Abd Samad NA; Lau KS; Chou PM; Tiong SK; Amin N
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32503128
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A photoelectrochemical immunosensor for tris(2,3-dibromopropyl) isocyanurate detection with a multiple hybrid CdTe/Au-TiO2 nanotube arrays.
    Feng H; Zhou L; Li J; Tran T T; Wang N; Yuan L; Yan Z; Cai Q
    Analyst; 2013 Oct; 138(19):5726-33. PubMed ID: 23900298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.
    Li Y; Wei X; Zhu B; Wang H; Tang Y; Sum TC; Chen X
    Nanoscale; 2016 Jun; 8(21):11284-90. PubMed ID: 27189633
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of plasmonic Au/TiO2 nanofiber films with enhanced photocatalytic activities.
    Li H; Liu E; Fan J; Hu X; Wan J; Sun L; Hu Y
    Appl Opt; 2016 Jan; 55(2):221-7. PubMed ID: 26835755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards efficient visible-light active photocatalysts: CdS/Au sensitized TiO2 nanotube arrays.
    Nguyen V; Cai Q; Grimes CA
    J Colloid Interface Sci; 2016 Dec; 483():287-294. PubMed ID: 27565960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steering the Pathway of Plasmon-Enhanced Photoelectrochemical CO
    Wang K; Fan N; Xu B; Wei Z; Chen C; Xie H; Ye W; Peng Y; Shen M; Fan R
    Small; 2022 May; 18(20):e2201882. PubMed ID: 35435325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergistic Effect of Plasmonic Gold Nanoparticles Decorated Carbon Nanotubes in Quantum Dots/TiO
    Selopal GS; Mohammadnezhad M; Besteiro LV; Cavuslar O; Liu J; Zhang H; Navarro-Pardo F; Liu G; Wang M; Durmusoglu EG; Acar HY; Sun S; Zhao H; Wang ZM; Rosei F
    Adv Sci (Weinh); 2020 Oct; 7(20):2001864. PubMed ID: 33101875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced Visible Light-Driven Photoelectrocatalytic Degradation of Paracetamol at a Ternary z-Scheme Heterojunction of Bi
    Mahhumane N; Cele LM; Muzenda C; Nkwachukwu OV; Koiki BA; Arotiba OA
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Au-Mediated Charge Transfer Process of Ternary Cu
    Shao Z; Zhang Y; Yang X; Zhong M
    ACS Omega; 2020 Apr; 5(13):7503-7518. PubMed ID: 32280894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays.
    Yang F; Xi J; Gan LY; Wang Y; Lu S; Ma W; Cai F; Zhang Y; Cheng C; Zhao Y
    J Colloid Interface Sci; 2016 Feb; 464():1-9. PubMed ID: 26598949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fe/Ni Bimetallic Organic Framework Deposited on TiO
    You SM; El Rouby WMA; Thamilselvan A; Tsai CK; Darmanto W; Doong RA; Millet P
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.