These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31342972)

  • 21. On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density-theoretical analysis.
    Lall AA; Terray A; Hart SJ
    Opt Express; 2010 Dec; 18(26):26775-90. PubMed ID: 21196954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow.
    Nam J; Tan JK; Khoo BL; Namgung B; Leo HL; Lim CT; Kim S
    Biomicrofluidics; 2015 Nov; 9(6):064117. PubMed ID: 26734115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of vortices near abrupt nano-channel height changes in electro-osmotic flow of aqueous solutions.
    Ramirez JC; Conlisk AT
    Biomed Microdevices; 2006 Dec; 8(4):325-30. PubMed ID: 16917661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vortices-interaction-induced microstreaming for the pump-free separation of particles.
    Zhou R; Yang J; Zhang Y; Luo F; Chen Y; Li Y; Luan T; Shou Q; Jiang X; Hu X; Wu J; Liu C; Zhong H; Li Z; Ho HP; Xing X
    Opt Lett; 2021 Aug; 46(15):3629-3632. PubMed ID: 34329242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-tunable microvortex capture of rare cells.
    Khojah R; Stoutamore R; Di Carlo D
    Lab Chip; 2017 Jul; 17(15):2542-2549. PubMed ID: 28613306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-capacity channel designed for particle separation with controlled electric fields and evaluation of involved forces.
    Masudo T; Okada T
    J Chromatogr A; 2006 Feb; 1106(1-2):196-204. PubMed ID: 16443462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial focusing of particles and cells in the microfluidic labyrinth device: Role of sharp turns.
    Gangadhar A; Vanapalli SA
    Biomicrofluidics; 2022 Jul; 16(4):044114. PubMed ID: 36039114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale.
    Benneker AM; Wood JA; Tsai PA; Lammertink RG
    Sci Rep; 2016 Nov; 6():37236. PubMed ID: 27853257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE).
    Jeon H; Kim Y; Lim G
    Sci Rep; 2016 Jan; 6():19911. PubMed ID: 26819221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow.
    Zhao K; Peng R; Li D
    Nanoscale; 2016 Dec; 8(45):18945-18955. PubMed ID: 27775139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optoelectrofluidic field separation based on light-intensity gradients.
    Lee S; Park HJ; Yoon JS; Kang KH
    Biomicrofluidics; 2010 Jul; 4(3):. PubMed ID: 20697461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of plastics by froth flotation. The role of size, shape and density of the particles.
    Pita F; Castilho A
    Waste Manag; 2017 Feb; 60():91-99. PubMed ID: 27478025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous dielectrophoretic size-based particle sorting.
    Kralj JG; Lis MT; Schmidt MA; Jensen KF
    Anal Chem; 2006 Jul; 78(14):5019-25. PubMed ID: 16841925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
    Lewpiriyawong N; Kandaswamy K; Yang C; Ivanov V; Stocker R
    Anal Chem; 2011 Dec; 83(24):9579-85. PubMed ID: 22035423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.
    Del Giudice F; Madadi H; Villone MM; D'Avino G; Cusano AM; Vecchione R; Ventre M; Maffettone PL; Netti PA
    Lab Chip; 2015 Apr; 15(8):1912-22. PubMed ID: 25732596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Radial Pillar Device (RAPID) for continuous and high-throughput separation of multi-sized particles.
    Mehendale N; Sharma O; D'Costa C; Paul D
    Biomed Microdevices; 2017 Nov; 20(1):6. PubMed ID: 29185049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.