These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31342979)

  • 21. The Role of Air-Electrode Structure on the Incorporation of Immiscible PFCs in Nonaqueous Li-O
    Balaish M; Ein-Eli Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9726-9737. PubMed ID: 28230970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liquid structure of and Li+ ion solvation in bis(trifluoromethanesulfonyl)amide based ionic liquids composed of 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium cations.
    Umebayashi Y; Hamano H; Seki S; Minofar B; Fujii K; Hayamizu K; Tsuzuki S; Kameda Y; Kohara S; Watanabe M
    J Phys Chem B; 2011 Oct; 115(42):12179-91. PubMed ID: 21961434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Li Coordination of a Novel Asymmetric Anion in Ionic Liquid-in-Li Salt Electrolytes.
    Nürnberg P; Lozinskaya EI; Shaplov AS; Schönhoff M
    J Phys Chem B; 2020 Feb; 124(5):861-870. PubMed ID: 31927960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.
    Ong MT; Verners O; Draeger EW; van Duin AC; Lordi V; Pask JE
    J Phys Chem B; 2015 Jan; 119(4):1535-45. PubMed ID: 25523643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional ionic liquids for enhancement of Li-ion transfer: the effect of cation structure on the charge-discharge performance of the Li4Ti5O12 electrode.
    Shimizu M; Usui H; Sakaguchi H
    Phys Chem Chem Phys; 2016 Feb; 18(7):5139-47. PubMed ID: 26548773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and transport properties of the LiPF6 doped 1-ethyl-2,3-dimethyl-imidazolium hexafluorophosphate ionic liquids: a molecular dynamics study.
    Niu S; Cao Z; Li S; Yan T
    J Phys Chem B; 2010 Jan; 114(2):877-81. PubMed ID: 19928826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport Properties of Li-TFSI Water-in-Salt Electrolytes.
    Li Z; Bouchal R; Mendez-Morales T; Rollet AL; Rizzi C; Le Vot S; Favier F; Rotenberg B; Borodin O; Fontaine O; Salanne M
    J Phys Chem B; 2019 Dec; 123(49):10514-10521. PubMed ID: 31726827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvation Structure and Dynamics of Li
    Huang Q; Lourenço TC; Costa LT; Zhang Y; Maginn EJ; Gurkan B
    J Phys Chem B; 2019 Jan; 123(2):516-527. PubMed ID: 30543427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of Li
    Bolimowska E; Castiglione F; Devemy J; Rouault H; Mele A; Pádua AAH; Santini CC
    J Phys Chem B; 2018 Sep; 122(36):8560-8569. PubMed ID: 30118227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. General Trend of a Negative Li Effective Charge in Ionic Liquid Electrolytes.
    Molinari N; Mailoa JP; Kozinsky B
    J Phys Chem Lett; 2019 May; 10(10):2313-2319. PubMed ID: 30999751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvation and rotational dynamics of coumarin 153 in ionic liquids: comparisons to conventional solvents.
    Jin H; Baker GA; Arzhantsev S; Dong J; Maroncelli M
    J Phys Chem B; 2007 Jun; 111(25):7291-302. PubMed ID: 17530885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents.
    Thompson MW; Matsumoto R; Sacci RL; Sanders NC; Cummings PT
    J Phys Chem B; 2019 Feb; 123(6):1340-1347. PubMed ID: 30652873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water-in-salt electrolytes made saltier by Gemini ionic liquids for highly efficient Li-ion batteries.
    Tot A; Zhang L; Berg EJ; Svensson PH; Kloo L
    Sci Rep; 2023 Feb; 13(1):2154. PubMed ID: 36750658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: a molecular dynamics study.
    Liu H; Maginn E
    J Chem Phys; 2013 Sep; 139(11):114508. PubMed ID: 24070298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.
    Smirnov VS; Kislenko SA
    Chemphyschem; 2018 Jan; 19(1):75-81. PubMed ID: 29121449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of coordinating and non-coordinating additives on the transport properties in ionic liquid electrolytes for lithium batteries.
    Bayley PM; Best AS; MacFarlane DR; Forsyth M
    Phys Chem Chem Phys; 2011 Mar; 13(10):4632-40. PubMed ID: 21279209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and Bis(trifluoromethanesulfonyl)imide anion.
    Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Scrosati B
    J Phys Chem B; 2009 Aug; 113(32):11247-51. PubMed ID: 19621942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A joint theoretical/experimental study of the structure, dynamics, and Li+ transport in bis([tri]fluoro[methane]sulfonyl)imide [T]FSI-based ionic liquids.
    Solano CJ; Jeremias S; Paillard E; Beljonne D; Lazzaroni R
    J Chem Phys; 2013 Jul; 139(3):034502. PubMed ID: 23883042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids.
    Borodin O; Smith GD; Henderson W
    J Phys Chem B; 2006 Aug; 110(34):16879-86. PubMed ID: 16927976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.