These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31343159)
21. Target induced reconstruction of DNAzymatic amplifier nanomachines in living cells for concurrent imaging and gene silencing. Li JJ; Li WN; Du WF; Lv MM; Wu ZK; Jiang JH Chem Commun (Camb); 2018 Sep; 54(75):10626-10629. PubMed ID: 30178789 [TBL] [Abstract][Full Text] [Related]
22. pH-induced intramolecular folding dynamics of i-motif DNA. Choi J; Kim S; Tachikawa T; Fujitsuka M; Majima T J Am Chem Soc; 2011 Oct; 133(40):16146-53. PubMed ID: 21882887 [TBL] [Abstract][Full Text] [Related]
23. Enzyme-driven i-motif DNA folding for logic operations and fluorescent biosensing. Wang M; Zhang G; Zhang D Chem Commun (Camb); 2015 Mar; 51(18):3812-5. PubMed ID: 25648065 [TBL] [Abstract][Full Text] [Related]
24. DNA-Based pH Nanosensor with Adjustable FRET Responses to Track Lysosomes and pH Fluctuations. Yue X; Qiao Y; Gu D; Qi R; Zhao H; Yin Y; Zhao W; Xi R; Meng M Anal Chem; 2021 May; 93(19):7250-7257. PubMed ID: 33944568 [TBL] [Abstract][Full Text] [Related]
26. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids. Melnychuk N; Klymchenko AS J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022 [TBL] [Abstract][Full Text] [Related]
27. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways. Modi S; Halder S; Nizak C; Krishnan Y Nanoscale; 2014 Jan; 6(2):1144-52. PubMed ID: 24297098 [TBL] [Abstract][Full Text] [Related]
28. The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide. Piao Y; Liu F; Seo TS Chem Commun (Camb); 2011 Nov; 47(44):12149-51. PubMed ID: 21993302 [TBL] [Abstract][Full Text] [Related]
29. Rational fabrication of a DNA walking nanomachine on graphene oxide surface for fluorescent bioassay. Liang L; Jiang YJ; Zhang LC; Liu H; Li YF; Li CM; Huang CZ Biosens Bioelectron; 2022 Sep; 211():114349. PubMed ID: 35576722 [TBL] [Abstract][Full Text] [Related]
30. A Mimosa-Inspired Cell-Surface-Anchored Ratiometric DNA Nanosensor for High-Resolution and Sensitive Response of Target Tumor Extracellular pH. Chen B; Wang Y; Ma W; Cheng H; Sun H; Wang H; Huang J; He X; Wang K Anal Chem; 2020 Nov; 92(22):15104-15111. PubMed ID: 33104329 [TBL] [Abstract][Full Text] [Related]
31. Hemicyanine based naked-eye ratiometric fluorescent probe for monitoring lysosomal pH and its application. Zhang Y; Zhao Y; Wu Y; Zhao B; Wang L; Song B Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117767. PubMed ID: 31707017 [TBL] [Abstract][Full Text] [Related]
32. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Surana S; Bhat JM; Koushika SP; Krishnan Y Nat Commun; 2011 Jun; 2():340. PubMed ID: 21654640 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of a Peptide-Human Telomere DNA Conjugate as a Fluorometric Imaging Reagent for Biological Sodium Ion. Sato S; Imaichi Y; Yoshiura Y; Nakazawa K; Takenaka S Anal Sci; 2019 Jan; 35(1):85-90. PubMed ID: 30393241 [TBL] [Abstract][Full Text] [Related]
34. A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells. He L; Lin W; Xu Q; Wei H ACS Appl Mater Interfaces; 2014 Dec; 6(24):22326-33. PubMed ID: 25408468 [TBL] [Abstract][Full Text] [Related]
35. Triplex-Functionalized DNA Tetrahedral Nanoprobe for Imaging of Intracellular pH and Tumor-Related Messenger RNA. Zhu C; Yang J; Zheng J; Chen S; Huang F; Yang R Anal Chem; 2019 Dec; 91(24):15599-15607. PubMed ID: 31762260 [TBL] [Abstract][Full Text] [Related]
36. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Liu X; Lu CH; Willner I Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959 [TBL] [Abstract][Full Text] [Related]
37. pH-Sensitive polymer assisted self-aggregation of bis(pyrene) in living cells in situ with turn-on fluorescence. Duan Z; Gao YJ; Qiao ZY; Qiao S; Wang Y; Hou C; Wang L; Wang H Nanotechnology; 2015 Sep; 26(35):355703. PubMed ID: 26245834 [TBL] [Abstract][Full Text] [Related]
38. Fluorescence resonance energy transfer-based DNA framework assembled split G-quadruplex nanodevices for microRNA sensing. Su G; Zhu M; Xu M; Pan J; Zhou Y; Zhou H; Zhang WS; Tong Y; Yu Y Chem Commun (Camb); 2020 Nov; 56(88):13583-13586. PubMed ID: 33052366 [TBL] [Abstract][Full Text] [Related]
39. DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. Zhang P; Li Z; Wang H; Zhuo Y; Yuan R; Chai Y Nanoscale; 2017 Feb; 9(6):2310-2316. PubMed ID: 28134381 [TBL] [Abstract][Full Text] [Related]
40. Single-molecule quantum-dot fluorescence resonance energy transfer. Hohng S; Ha T Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]