BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 31343239)

  • 1. Wayfinding in a virtual environment and Down syndrome: The impact of navigational aids.
    N Kaoua B; Landuran A; Sauzéon H
    Neuropsychology; 2019 Nov; 33(8):1045-1056. PubMed ID: 31343239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the different domains of environmental knowledge acquired from virtual navigation and their relationship to cognitive factors and wayfinding inclinations.
    Muffato V; Miola L; Pellegrini M; Pazzaglia F; Meneghetti C
    Cogn Res Princ Implic; 2023 Aug; 8(1):50. PubMed ID: 37530868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landmark use by ghost crab (Ocypode quadrata) during wayfinding in a complex maze.
    Robinson T
    Behav Processes; 2024 Apr; 217():105026. PubMed ID: 38582301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing younger and older adults' spatial disorientation during indoor-outdoor transitions: Effects of route alignment and visual access on wayfinding.
    Zuo Y; Zhou J
    Behav Brain Res; 2024 May; 465():114967. PubMed ID: 38556060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of different navigational aids on wayfinding and spatial memory for older adults.
    Ai L; Yang Y; Wang Q
    Psychol Aging; 2023 Nov; 38(7):670-683. PubMed ID: 37104785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encouraging 5-year olds to attend to landmarks: a way to improve children's wayfinding strategies in a virtual environment.
    Lingwood J; Blades M; Farran EK; Courbois Y; Matthews D
    Front Psychol; 2015; 6():174. PubMed ID: 25814960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of spatial anxiety in a virtual navigation environment.
    Oliver A; Wildschut T; Parker MO; Wood AP; Redhead ES
    Behav Res Methods; 2023 Oct; 55(7):3621-3628. PubMed ID: 36224307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Acquisition of Survey Knowledge by Individuals With Down Syndrome.
    Himmelberger ZM; Merrill EC; Conners FA; Roskos B; Yang Y; Robinson T
    Front Hum Neurosci; 2020; 14():256. PubMed ID: 32719594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress affects navigation strategies in immersive virtual reality.
    Varshney A; Munns ME; Kasowski J; Zhou M; He C; Grafton ST; Giesbrecht B; Hegarty M; Beyeler M
    Sci Rep; 2024 Mar; 14(1):5949. PubMed ID: 38467699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereotypical Hippocampal Clustering Predicts Navigational Success in Virtualized Real-World Environments.
    Ozubko JD; Campbell M; Verhayden A; Demetri B; Brady M; Thorp J; Brunec I
    J Neurosci; 2024 Jun; 44(24):. PubMed ID: 38641405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wayfinding in pairs: comparing the planning and navigation performance of dyads and individuals in a real-world environment.
    Bae C; Montello D; Hegarty M
    Cogn Res Princ Implic; 2024 Jun; 9(1):40. PubMed ID: 38902485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of verbal instructions while using digital indoor wayfinding devices on gender, performance, and self-reported strategies.
    Morag I; Parush A
    Appl Ergon; 2024 Jan; 114():104160. PubMed ID: 37918278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memory effects of visual and olfactory landmark information in human wayfinding.
    Schwarz M; Hamburger K
    Cogn Process; 2024 Feb; 25(1):37-51. PubMed ID: 38032500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring configural spatial knowledge: Individual differences in correlations between pointing and shortcutting.
    He C; Boone AP; Hegarty M
    Psychon Bull Rev; 2023 Oct; 30(5):1802-1813. PubMed ID: 36932307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit versus explicit processing of visual, olfactory, and multimodal landmark information in human wayfinding.
    Schwarz M; Hamburger K
    Front Psychol; 2023; 14():1285034. PubMed ID: 38034279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memorization of daily routines by children with Down syndrome assisted by a playful virtual environment.
    da Cruz Netto OL; Rodrigues SCM; de Castro MV; da Silva DP; da Silva RR; de Souza RRB; de Souza AAF; Bissaco MAS
    Sci Rep; 2020 Feb; 10(1):3144. PubMed ID: 32081920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the effects of a programming error on a virtual environment measure of spatial navigation behavior.
    Weisberg SM; Schinazi VR; Ferrario A; Newcombe NS
    J Exp Psychol Learn Mem Cogn; 2023 Apr; 49(4):575-589. PubMed ID: 36074604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nostalgia enhances route learning in a virtual environment.
    Redhead ES; Wildschut T; Oliver A; Parker MO; Wood AP; Sedikides C
    Cogn Emot; 2023; 37(4):617-632. PubMed ID: 36883220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wayfinding in Complex Medical Facilities: The Indexicality of Directional Arrows.
    Rooke CN; Rooke JA; Tzortzopoulos P; Koskela L
    HERD; 2023 Oct; 16(4):118-131. PubMed ID: 37322856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual reality in the rehabilitation process for individuals with cerebral palsy and Down syndrome: A systematic review.
    Lopes JBP; Duarte NAC; Lazzari RD; Oliveira CS
    J Bodyw Mov Ther; 2020 Oct; 24(4):479-483. PubMed ID: 33218550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.