These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3134324)

  • 81. The effect of chronic hypoxia upon the development of respiratory chemoreflexes in the newborn kitten.
    Hanson MA; Kumar P; Williams BA
    J Physiol; 1989 Apr; 411():563-74. PubMed ID: 2614733
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Role of peripheral and central chemosensitive afferents in the control of depth and frequency of breathing.
    Miserocchi G
    Respir Physiol; 1976 Feb; 26(1):101-11. PubMed ID: 1273385
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A model of the chemoreflex control of breathing in humans: model parameters measurement.
    Duffin J; Mohan RM; Vasiliou P; Stephenson R; Mahamed S
    Respir Physiol; 2000 Mar; 120(1):13-26. PubMed ID: 10786641
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Modulation by "central" PCO2 of the response to carotid body stimulation in man.
    Roberts CA; Corfield DR; Murphy K; Calder NA; Hanson MA; Adams L; Guz A
    Respir Physiol; 1995 Dec; 102(2-3):149-61. PubMed ID: 8904007
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The influence of indomethacin on the ventilatory response to CO2 in newborn anaesthetized piglets.
    Wolsink JG; Berkenbosch A; DeGoede J; Olievier CN
    J Physiol; 1994 Jun; 477(Pt 2):339-45. PubMed ID: 7932224
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The dynamic effect of PETCO, on vertebral bloodflow in cats.
    Vis A; Folgering H
    Respir Physiol; 1980 Nov; 42(2):131-43. PubMed ID: 6784206
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effect of ambient temperature on respiratory chemoreflex in unanaesthetized kittens.
    Watanabe T; Kumar P; Hanson MA
    Respir Physiol; 1996 Dec; 106(3):239-46. PubMed ID: 9017842
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Inspiratory-expiratory responses to alternate-breath oscillation of PACO2 and PAO2.
    Ward SA; Drysdale DB; Cunningham DJ; Petersen ES
    Respir Physiol; 1979 Apr; 36(3):311-25. PubMed ID: 441583
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Non-invasive tracking of peripheral ventilatory response to carbon dioxide.
    Khoo MC
    Int J Biomed Comput; 1989 Dec; 24(4):283-95. PubMed ID: 2514147
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Respiratory response of intact Gallus domesticus to sinusoidally varying inhaled carbon dioxide.
    Parker TK; Nye PC; Stoll PJ; Burger RE
    Comput Programs Biomed; 1976 Jul; 6(2):101-7. PubMed ID: 954412
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The reproducibility and comparability of tests of the peripheral chemoreflex: comparing the transient hypoxic ventilatory drive test and the single-breath carbon dioxide response test in healthy subjects.
    Chua TP; Coats AJ
    Eur J Clin Invest; 1995 Dec; 25(12):887-92. PubMed ID: 8719926
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Rapid ventilatory responses to changes in insufflated CO2 in awake roosters.
    Clanton TL; Ballam GO; Moore RK; Kunz AL
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1371-7. PubMed ID: 6818208
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Chamber for controlling end-tidal gas tensions over sustained periods in humans.
    Howard LS; Barson RA; Howse BP; McGill TR; McIntyre ME; O'Connor DF; Robbins PA
    J Appl Physiol (1985); 1995 Mar; 78(3):1088-91. PubMed ID: 7775302
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Ventilatory responses to respiratory and metabolic acid-base disturbances in cats.
    Schuitmaker JJ; Berkenbosch A; DeGoede J; Olievier CN
    Respir Physiol; 1987 Jan; 67(1):69-83. PubMed ID: 3103186
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A dynamic analysis of the ventilatory response to carbon dioxide inhalation in man.
    Bertholon JF; Carles J; Eugene M; Labeyrie E; Teillac A
    J Physiol; 1988 Apr; 398():423-40. PubMed ID: 3134543
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The effect on breathing of abruptly reducing the discharge of central chemoreceptors.
    Nye PC; Hanson MA; Torrance RW
    Respir Physiol; 1983 Jan; 51(1):109-18. PubMed ID: 6403978
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Changes in respiratory frequency and end-expiratory volume accompanying augmented breaths in cats.
    Szereda-Przestaszewska M; Bartlett D; Wise JC
    Pflugers Arch; 1976 Jun; 364(1):29-33. PubMed ID: 986615
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Effect of N omega-nitro-L-arginine on ventilatory response to hypercapnia in anesthetized cats.
    Teppema L; Berkenbosch A; Olievier C
    J Appl Physiol (1985); 1997 Jan; 82(1):292-7. PubMed ID: 9029229
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A quantitative description of the pattern of breathing during steady-state CO2 inhalation in man, with special emphasis on expiration.
    Cunningham DJ; Gardner WN
    J Physiol; 1977 Nov; 272(3):613-32. PubMed ID: 592205
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Laryngeal receptors are sensitive to expiratory concentrations of CO2.
    Bradford A; O'Regan RG; Nolan P; McKeogh D
    Adv Exp Med Biol; 1994; 360():385-7. PubMed ID: 7872126
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.