BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31343552)

  • 1. Determining the Corticospinal Responses to Single Bouts of Skill and Strength Training.
    Mason J; Frazer AK; Jaberzadeh S; Ahtiainen JP; Avela J; Rantalainen T; Leung M; Kidgell DJ
    J Strength Cond Res; 2019 Sep; 33(9):2299-2307. PubMed ID: 31343552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Priming the Motor Cortex With Anodal Transcranial Direct Current Stimulation Affects the Acute Inhibitory Corticospinal Responses to Strength Training.
    Frazer AK; Howatson G; Ahtiainen JP; Avela J; Rantalainen T; Kidgell DJ
    J Strength Cond Res; 2019 Feb; 33(2):307-317. PubMed ID: 30688872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor cortex excitability is not differentially modulated following skill and strength training.
    Leung M; Rantalainen T; Teo WP; Kidgell D
    Neuroscience; 2015 Oct; 305():99-108. PubMed ID: 26259901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking the corticospinal responses to strength training.
    Mason J; Frazer AK; Avela J; Pearce AJ; Howatson G; Kidgell DJ
    Eur J Appl Physiol; 2020 Apr; 120(4):783-798. PubMed ID: 32060740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of intracortical inhibition and excitation in agonist and antagonist muscles following acute strength training.
    Mason J; Howatson G; Frazer AK; Pearce AJ; Jaberzadeh S; Avela J; Kidgell DJ
    Eur J Appl Physiol; 2019 Oct; 119(10):2185-2199. PubMed ID: 31385029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the early corticospinal-motoneuronal responses to strength training: a systematic review and meta-analysis.
    Mason J; Frazer AK; Pearce AJ; Goodwill AM; Howatson G; Jaberzadeh S; Kidgell DJ
    Rev Neurosci; 2019 Jul; 30(5):463-476. PubMed ID: 30864400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke.
    Nepveu JF; Thiel A; Tang A; Fung J; Lundbye-Jensen J; Boyd LA; Roig M
    Neurorehabil Neural Repair; 2017 Aug; 31(8):726-735. PubMed ID: 28691645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in corticospinal excitability and intracortical inhibition after upper extremity motor learning: a systematic review and meta-analysis.
    Berghuis KMM; Semmler JG; Opie GM; Post AK; Hortobágyi T
    Neurobiol Aging; 2017 Jul; 55():61-71. PubMed ID: 28431286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days.
    Christiansen L; Madsen MJ; Bojsen-Møller E; Thomas R; Nielsen JB; Lundbye-Jensen J
    Brain Stimul; 2018; 11(2):346-357. PubMed ID: 29187320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticomotor excitability and plasticity following complex visuomotor training in young and old adults.
    Cirillo J; Todd G; Semmler JG
    Eur J Neurosci; 2011 Dec; 34(11):1847-56. PubMed ID: 22004476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anodal tDCS applied during strength training enhances motor cortical plasticity.
    Hendy AM; Kidgell DJ
    Med Sci Sports Exerc; 2013 Sep; 45(9):1721-9. PubMed ID: 23470308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor skill training and strength training are associated with different plastic changes in the central nervous system.
    Jensen JL; Marstrand PC; Nielsen JB
    J Appl Physiol (1985); 2005 Oct; 99(4):1558-68. PubMed ID: 15890749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term motor skill training with individually adjusted progressive difficulty enhances learning and promotes corticospinal plasticity.
    Christiansen L; Larsen MN; Madsen MJ; Grey MJ; Nielsen JB; Lundbye-Jensen J
    Sci Rep; 2020 Sep; 10(1):15588. PubMed ID: 32973251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The corticospinal responses of metronome-paced, but not self-paced strength training are similar to motor skill training.
    Leung M; Rantalainen T; Teo WP; Kidgell D
    Eur J Appl Physiol; 2017 Dec; 117(12):2479-2492. PubMed ID: 29018949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in motor cortex excitability following training of a novel goal-directed motor task.
    Gallasch E; Christova M; Krenn M; Kossev A; Rafolt D
    Eur J Appl Physiol; 2009 Jan; 105(1):47-54. PubMed ID: 18807065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance.
    Opie GM; Evans A; Ridding MC; Semmler JG
    Neuroscience; 2016 Aug; 330():247-56. PubMed ID: 27282084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-dependent modulation of corticospinal excitability and inhibition following strength training.
    Siddique U; Rahman S; Frazer A; Leung M; Pearce AJ; Kidgell DJ
    J Electromyogr Kinesiol; 2020 Jun; 52():102411. PubMed ID: 32244044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength training reduces intracortical inhibition.
    Weier AT; Pearce AJ; Kidgell DJ
    Acta Physiol (Oxf); 2012 Oct; 206(2):109-19. PubMed ID: 22642686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training.
    Kidgell DJ; Frazer AK; Daly RM; Rantalainen T; Ruotsalainen I; Ahtiainen J; Avela J; Howatson G
    Neuroscience; 2015 Aug; 300():566-75. PubMed ID: 26037804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.