BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 31343786)

  • 1. Mitochondrial targets of metformin-Are they physiologically relevant?
    Pecinová A; Brázdová A; Drahota Z; Houštěk J; Mráček T
    Biofactors; 2019 Sep; 45(5):703-711. PubMed ID: 31343786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin.
    Leverve XM; Guigas B; Detaille D; Batandier C; Koceir EA; Chauvin C; Fontaine E; Wiernsperger NF
    Diabetes Metab; 2003 Sep; 29(4 Pt 2):6S88-94. PubMed ID: 14502105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metformin as an Anticancer Agent.
    Vancura A; Bu P; Bhagwat M; Zeng J; Vancurova I
    Trends Pharmacol Sci; 2018 Oct; 39(10):867-878. PubMed ID: 30150001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells.
    Kukidome D; Nishikawa T; Sonoda K; Imoto K; Fujisawa K; Yano M; Motoshima H; Taguchi T; Matsumura T; Araki E
    Diabetes; 2006 Jan; 55(1):120-7. PubMed ID: 16380484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metformin and Breast Cancer: Molecular Targets.
    Faria J; Negalha G; Azevedo A; Martel F
    J Mammary Gland Biol Neoplasia; 2019 Jun; 24(2):111-123. PubMed ID: 30903363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metformin protects high glucose‑cultured cardiomyocytes from oxidative stress by promoting NDUFA13 expression and mitochondrial biogenesis via the AMPK signaling pathway.
    Liu XD; Li YG; Wang GY; Bi YG; Zhao Y; Yan ML; Liu X; Wei M; Wan LL; Zhang QY
    Mol Med Rep; 2020 Dec; 22(6):5262-5270. PubMed ID: 33174032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metformin: from mechanisms of action to therapies.
    Foretz M; Guigas B; Bertrand L; Pollak M; Viollet B
    Cell Metab; 2014 Dec; 20(6):953-66. PubMed ID: 25456737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.
    Shaw RJ; Lamia KA; Vasquez D; Koo SH; Bardeesy N; Depinho RA; Montminy M; Cantley LC
    Science; 2005 Dec; 310(5754):1642-6. PubMed ID: 16308421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis.
    Griss T; Vincent EE; Egnatchik R; Chen J; Ma EH; Faubert B; Viollet B; DeBerardinis RJ; Jones RG
    PLoS Biol; 2015 Dec; 13(12):e1002309. PubMed ID: 26625127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current understanding of metformin effect on the control of hyperglycemia in diabetes.
    An H; He L
    J Endocrinol; 2016 Mar; 228(3):R97-106. PubMed ID: 26743209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation.
    Kim KH; Jeong YT; Kim SH; Jung HS; Park KS; Lee HY; Lee MS
    Biochem Biophys Res Commun; 2013 Oct; 440(1):76-81. PubMed ID: 24041694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer risk in type 2 diabetes.
    Kong AP; Chan JC
    Curr Diab Rep; 2012 Aug; 12(4):325-8. PubMed ID: 22562651
    [No Abstract]   [Full Text] [Related]  

  • 13. Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators.
    Guigas B; Viollet B
    Exp Suppl; 2016; 107():327-350. PubMed ID: 27812986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metformin Protects H9C2 Cardiomyocytes from High-Glucose and Hypoxia/Reoxygenation Injury via Inhibition of Reactive Oxygen Species Generation and Inflammatory Responses: Role of AMPK and JNK.
    Hu M; Ye P; Liao H; Chen M; Yang F
    J Diabetes Res; 2016; 2016():2961954. PubMed ID: 27294149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK.
    Wang Y; An H; Liu T; Qin C; Sesaki H; Guo S; Radovick S; Hussain M; Maheshwari A; Wondisford FE; O'Rourke B; He L
    Cell Rep; 2019 Nov; 29(6):1511-1523.e5. PubMed ID: 31693892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular action of metformin in hepatocytes: an updated insight.
    Sliwinska A; Drzewoski J
    Curr Diabetes Rev; 2015; 11(3):175-81. PubMed ID: 25808533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer.
    Hinke SA; Martens GA; Cai Y; Finsi J; Heimberg H; Pipeleers D; Van de Casteele M
    Br J Pharmacol; 2007 Apr; 150(8):1031-43. PubMed ID: 17339833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMP-activated protein kinase: a target for drugs both ancient and modern.
    Hardie DG; Ross FA; Hawley SA
    Chem Biol; 2012 Oct; 19(10):1222-36. PubMed ID: 23102217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus.
    Foretz M; Guigas B; Viollet B
    Nat Rev Endocrinol; 2019 Oct; 15(10):569-589. PubMed ID: 31439934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production.
    Pecinova A; Drahota Z; Kovalcikova J; Kovarova N; Pecina P; Alan L; Zima M; Houstek J; Mracek T
    Oxid Med Cell Longev; 2017; 2017():7038603. PubMed ID: 28874953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.