These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 313438)

  • 1. Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog.
    Caputo C; Fernandez de Bolaños P
    J Physiol; 1979 Apr; 289():175-89. PubMed ID: 313438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane charge moved at contraction thresholds in skeletal muscle fibres.
    Horowicz P; Schneider MF
    J Physiol; 1981 May; 314():595-633. PubMed ID: 6975815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical activation in slow and twitch skeletal muscle fibres of the frog.
    Gilly WF; Hui CS
    J Physiol; 1980 Apr; 301():137-56. PubMed ID: 6967970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of membrane polarization on contractile threshold and time course of prolonged contractile responses in skeletal muscle fibers.
    Caputo C; Bolaños P; Gonzalez GF
    J Gen Physiol; 1984 Dec; 84(6):927-43. PubMed ID: 6097639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane charge movement in contracting and non-contracting skeletal muscle fibres.
    Horowicz P; Schneider MF
    J Physiol; 1981 May; 314():565-93. PubMed ID: 6975814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog.
    Kovács L; Szücs G
    J Physiol; 1983 Aug; 341():559-78. PubMed ID: 6604806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium transients studied under voltage-clamp control in frog twitch muscle fibres.
    Miledi R; Parker I; Zhu PH
    J Physiol; 1983 Jul; 340():649-80. PubMed ID: 6604154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depolarization-contraction coupling in short frog muscle fibers. A voltage clamp study.
    Caputo C; Bezanilla F; Horowicz P
    J Gen Physiol; 1984 Jul; 84(1):133-54. PubMed ID: 6611386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of calcium, barium and lanthanum on depolarization-contraction coupling in skeletal muscle fibres of Rana pipiens.
    Bolaños P; Caputo C; Velaz L
    J Physiol; 1986 Jan; 370():39-60. PubMed ID: 3485716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramembrane charge movement and calcium release in frog skeletal muscle.
    Melzer W; Schneider MF; Simon BJ; Szucs G
    J Physiol; 1986 Apr; 373():481-511. PubMed ID: 3489092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraslow contractile inactivation in frog skeletal muscle fibers.
    Caputo C; Bolaños P
    J Gen Physiol; 1990 Jul; 96(1):47-56. PubMed ID: 2212980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of low temperature on the excitation-contraction coupling phenomena of frog single muscle fibres.
    Caputo C
    J Physiol; 1972 Jun; 223(2):461-82. PubMed ID: 4537710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile activation in frog skeletal muscle.
    Costantin LL
    J Gen Physiol; 1974 Jun; 63(6):657-74. PubMed ID: 4545389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation-concentration coupling in frog ventricle: evidence from voltage clamp studies.
    Morad M; Orkand RK
    J Physiol; 1971 Dec; 219(1):167-89. PubMed ID: 5316660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization.
    Rakowski RF
    J Physiol; 1981 Aug; 317():129-48. PubMed ID: 6975817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres.
    Kovács L; Schneider MF
    J Physiol; 1978 Apr; 277():483-506. PubMed ID: 306440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of external calcium concentration and pH on charge movement in frog skeletal muscle.
    Shlevin HH
    J Physiol; 1979 Mar; 288():129-58. PubMed ID: 38332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.
    Lüttgau HC; Spiecker W
    J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent electrical activity and contraction of voltage-clamped frog single muscle fibres.
    Potreau D; Raymond G
    J Physiol; 1980 Oct; 307():9-22. PubMed ID: 7205682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile responses to direct stimulation of frog slow muscle fibres before and after denervation.
    Lehmann N; Schmidt H
    Pflugers Arch; 1979 Oct; 382(1):43-50. PubMed ID: 316518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.