These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31343819)
1. Oganesson Is a Semiconductor: On the Relativistic Band-Gap Narrowing in the Heaviest Noble-Gas Solids. Mewes JM; Jerabek P; Smits OR; Schwerdtfeger P Angew Chem Int Ed Engl; 2019 Oct; 58(40):14260-14264. PubMed ID: 31343819 [TBL] [Abstract][Full Text] [Related]
2. Oganesson: A Noble Gas Element That Is Neither Noble Nor a Gas. Smits OR; Mewes JM; Jerabek P; Schwerdtfeger P Angew Chem Int Ed Engl; 2020 Dec; 59(52):23636-23640. PubMed ID: 32959952 [TBL] [Abstract][Full Text] [Related]
3. Solid Oganesson via a Many-Body Interaction Expansion Based on Relativistic Coupled-Cluster Theory and from Plane-Wave Relativistic Density Functional Theory. Jerabek P; Smits OR; Mewes JM; Peterson KA; Schwerdtfeger P J Phys Chem A; 2019 May; 123(19):4201-4211. PubMed ID: 31017443 [TBL] [Abstract][Full Text] [Related]
4. The van der Waals interactions in systems involving superheavy elements: the case of oganesson ( Machado de Macedo LG; Negrão CAB; de Oliveira RM; de Menezes RF; Pirani F; Gargano R Phys Chem Chem Phys; 2022 Dec; 25(1):633-645. PubMed ID: 36484393 [TBL] [Abstract][Full Text] [Related]
5. From the gas phase to the solid state: The chemical bonding in the superheavy element flerovium. Florez E; Smits OR; Mewes JM; Jerabek P; Schwerdtfeger P J Chem Phys; 2022 Aug; 157(6):064304. PubMed ID: 35963734 [TBL] [Abstract][Full Text] [Related]
6. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit. Jerabek P; Schuetrumpf B; Schwerdtfeger P; Nazarewicz W Phys Rev Lett; 2018 Feb; 120(5):053001. PubMed ID: 29481184 [TBL] [Abstract][Full Text] [Related]
7. Copernicium: A Relativistic Noble Liquid. Mewes JM; Smits OR; Kresse G; Schwerdtfeger P Angew Chem Int Ed Engl; 2019 Dec; 58(50):17964-17968. PubMed ID: 31596013 [TBL] [Abstract][Full Text] [Related]
8. Accurate band gaps and dielectric properties from one-electron theories (abstract only). Kresse G; Shishkin M; Marsman M; Paier J J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865 [TBL] [Abstract][Full Text] [Related]
9. A theoretical study of the adsorption behavior of superheavy 7p-elements and their compounds on a surface of gold in comparison with their lighter homologs. Ryzhkov A; Pershina V; Iliaš M; Shabaev V Phys Chem Chem Phys; 2023 Jun; 25(22):15362-15370. PubMed ID: 37227053 [TBL] [Abstract][Full Text] [Related]
10. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators. Grüning M; Marini A; Rubio A J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219 [TBL] [Abstract][Full Text] [Related]
11. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects. Lantto P; Vaara J J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447 [TBL] [Abstract][Full Text] [Related]
12. Understanding band gaps of solids in generalized Kohn-Sham theory. Perdew JP; Yang W; Burke K; Yang Z; Gross EK; Scheffler M; Scuseria GE; Henderson TM; Zhang IY; Ruzsinszky A; Peng H; Sun J; Trushin E; Görling A Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2801-2806. PubMed ID: 28265085 [TBL] [Abstract][Full Text] [Related]
13. A new generalized Kohn-Sham method for fundamental band-gaps in solids. Eisenberg HR; Baer R Phys Chem Chem Phys; 2009 Jun; 11(22):4674-80. PubMed ID: 19475189 [TBL] [Abstract][Full Text] [Related]
14. Gold-superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study. Rampino S; Storchi L; Belpassi L J Chem Phys; 2015 Jul; 143(2):024307. PubMed ID: 26178105 [TBL] [Abstract][Full Text] [Related]
15. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of inert gases including element 118 on noble metal and inert surfaces from ab initio Dirac-Coulomb atomic calculations. Pershina V; Borschevsky A; Eliav E; Kaldor U J Chem Phys; 2008 Oct; 129(14):144106. PubMed ID: 19045133 [TBL] [Abstract][Full Text] [Related]
17. Chemical experiments with superheavy elements. Türler A Chimia (Aarau); 2010; 64(5):293-8. PubMed ID: 21138073 [TBL] [Abstract][Full Text] [Related]
18. Resolution of the Band Gap Prediction Problem for Materials Design. Crowley JM; Tahir-Kheli J; Goddard WA J Phys Chem Lett; 2016 Apr; 7(7):1198-203. PubMed ID: 26944092 [TBL] [Abstract][Full Text] [Related]
19. What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. Ballentine CJ; Holland G Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4183-203. PubMed ID: 18826923 [TBL] [Abstract][Full Text] [Related]
20. Relativistic many-body perturbation theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic correlation energies for the noble-gas sequence through Rn (Z=86), the group-IIB atoms through Hg, and the ions of Ne isoelectronic sequence. Ishikawa Y; Koc K Phys Rev A; 1994 Dec; 50(6):4733-4742. PubMed ID: 9911470 [No Abstract] [Full Text] [Related] [Next] [New Search]