These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31344348)

  • 1. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer.
    Jiménez-Vacas JM; Herrero-Aguayo V; Gómez-Gómez E; León-González AJ; Sáez-Martínez P; Alors-Pérez E; Fuentes-Fayos AC; Martínez-López A; Sánchez-Sánchez R; González-Serrano T; López-Ruiz DJ; Requena-Tapia MJ; Castaño JP; Gahete MD; Luque RM
    Transl Res; 2019 Oct; 212():89-103. PubMed ID: 31344348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SF3B1 inhibition disrupts malignancy and prolongs survival in glioblastoma patients through BCL2L1 splicing and mTOR/ß-catenin pathways imbalances.
    Fuentes-Fayos AC; Pérez-Gómez JM; G-García ME; Jiménez-Vacas JM; Blanco-Acevedo C; Sánchez-Sánchez R; Solivera J; Breunig JJ; Gahete MD; Castaño JP; Luque RM
    J Exp Clin Cancer Res; 2022 Jan; 41(1):39. PubMed ID: 35086552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Splicing Modulation as an Innovative Approach to Combat Pancreatic Cancer: SF3B1 Emerges as a Prognostic Indicator and Therapeutic Target.
    Sciarrillo R; Terrana F; Comandatore A; Supadmanaba IGP; Wang B; Hassouni BE; Mantini G; Jansen G; Avan A; Carbone D; Diana P; Peters GJ; Morelli L; Cloos J; Assaraf YG; Giovannetti E
    Int J Biol Sci; 2024; 20(8):3173-3184. PubMed ID: 38904016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B.
    Kashyap MK; Kumar D; Villa R; La Clair JJ; Benner C; Sasik R; Jones H; Ghia EM; Rassenti LZ; Kipps TJ; Burkart MD; Castro JE
    Haematologica; 2015 Jul; 100(7):945-54. PubMed ID: 25862704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer.
    Sáez-Martínez P; Jiménez-Vacas JM; León-González AJ; Herrero-Aguayo V; Montero Hidalgo AJ; Gómez-Gómez E; Sánchez-Sánchez R; Requena-Tapia MJ; Castaño JP; Gahete MD; Luque RM
    J Clin Med; 2020 Jun; 9(6):. PubMed ID: 32498336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SF3B1 homeostasis is critical for survival and therapeutic response in T cell leukemia.
    Han C; Khodadadi-Jamayran A; Lorch AH; Jin Q; Serafin V; Zhu P; Politanska Y; Sun L; Gutierrez-Diaz BT; Pryzhkova MV; Abdala-Valencia H; Bartom ET; Buldini B; Basso G; Velu SE; Sarma K; Mattamana BB; Cho BK; Obeng RC; Goo YA; Jordan PW; Tsirigos A; Zhou Y; Ntziachristos P
    Sci Adv; 2022 Jan; 8(3):eabj8357. PubMed ID: 35061527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients.
    Belluti S; Semeghini V; Rigillo G; Ronzio M; Benati D; Torricelli F; Reggiani Bonetti L; Carnevale G; Grisendi G; Ciarrocchi A; Dominici M; Recchia A; Dolfini D; Imbriano C
    J Exp Clin Cancer Res; 2021 Nov; 40(1):362. PubMed ID: 34782004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysregulation of RNA-Exosome machinery is directly linked to major cancer hallmarks in prostate cancer: Oncogenic role of PABPN1.
    Sáez-Martínez P; Porcel-Pastrana F; Montero-Hidalgo AJ; Lozano de la Haba S; Sanchez-Sanchez R; González-Serrano T; Gómez-Gómez E; Martínez-Fuentes AJ; Jiménez-Vacas JM; Gahete MD; Luque RM
    Cancer Lett; 2024 Mar; 584():216604. PubMed ID: 38244911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (G)Patching up mis-splicing in cancer.
    Cieśla M; Bellodi C
    Trends Biochem Sci; 2024 Jul; 49(7):564-566. PubMed ID: 38762373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of SF3B1 improves the immune microenvironment through pyroptosis and synergizes with αPDL1 in ovarian cancer.
    Wang S; Liu Y; Xiao H; Chen Z; Yang X; Yin J; Li Y; Yuan C; Yan S; Chen G; Gao Q; Kong B; Sun C; Song K
    Cell Death Dis; 2023 Nov; 14(11):775. PubMed ID: 38012150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant spliceosome activity via elevated intron retention and upregulation and phosphorylation of SF3B1 in chronic lymphocytic leukemia.
    Kashyap MK; Karathia H; Kumar D; Vera Alvarez R; Forero-Forero JV; Moreno E; Lujan JV; Amaya-Chanaga CI; Vidal NM; Yu Z; Ghia EM; Lengerke-Diaz PA; Achinko D; Choi MY; Rassenti LZ; Mariño-Ramírez L; Mount SM; Hannenhalli S; Kipps TJ; Castro JE
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102202. PubMed ID: 38846999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape.
    Boddu PC; Gupta AK; Roy R; De La Peña Avalos B; Olazabal-Herrero A; Neuenkirchen N; Zimmer JT; Chandhok NS; King D; Nannya Y; Ogawa S; Lin H; Simon MD; Dray E; Kupfer GM; Verma A; Neugebauer KM; Pillai MM
    Mol Cell; 2024 Apr; 84(8):1475-1495.e18. PubMed ID: 38521065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological relevance of alternative splicing in hematologic malignancies.
    Szelest M; Giannopoulos K
    Mol Med; 2024 May; 30(1):62. PubMed ID: 38760666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer.
    Wang BD; Ceniccola K; Hwang S; Andrawis R; Horvath A; Freedman JA; Olender J; Knapp S; Ching T; Garmire L; Patel V; Garcia-Blanco MA; Patierno SR; Lee NH
    Nat Commun; 2017 Jun; 8():15921. PubMed ID: 28665395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensively analysis of splicing factors to construct prognosis prediction classifier in prostate cancer.
    Zhang H; Tian J; Ren S; Han B; Tian R; Zuo X; Liu H; Wang Z; Cui Y; Liu L; Guo H; Zhang F; Niu R
    J Cell Mol Med; 2023 Sep; 27(18):2684-2700. PubMed ID: 37559353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GLIS1, Correlated with Immune Infiltrates, Is a Potential Prognostic Biomarker in Prostate Cancer.
    Peng Q; Xie T; Wang Y; Ho VW; Teoh JY; Chiu PK; Ng CF
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms.
    Gujrati H; Ha S; Wang BD
    Cancers (Basel); 2023 Jun; 15(12):. PubMed ID: 37370750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevalence and clinical correlations of SF3B1 variants in lactotroph tumours.
    Simon J; Perez-Rivas LG; Zhao Y; Chasseloup F; Lasolle H; Cortet C; Descotes F; Villa C; Baussart B; Burman P; Maiter D; von Selzam V; Rotermund R; Flitsch J; Thorsteinsdottir J; Jouanneau E; Buchfelder M; Chanson P; Raverot G; Theodoropoulou M
    Eur J Endocrinol; 2023 Sep; 189(3):372-378. PubMed ID: 37721395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting new drug indications for prostate cancer: The integration of an in silico proteochemometric network pharmacology platform with patient-derived primary prostate cells.
    Naeem A; Dakshanamurthy S; Walthieu H; Parasido E; Avantaggiati M; Tricoli L; Kumar D; Lee RJ; Feldman A; Noon MS; Byers S; Rodriguez O; Albanese C
    Prostate; 2020 Oct; 80(14):1233-1243. PubMed ID: 32761925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Data Science Approach for the Identification of Molecular Signatures of Aggressive Cancers.
    Barbosa-Silva A; Magalhães M; Da Silva GF; Da Silva FAB; Carneiro FRG; Carels N
    Cancers (Basel); 2022 May; 14(9):. PubMed ID: 35565454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.