BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 31344426)

  • 1. Inhibition of breast cancer proliferation and metastasis by strengthening host immunity with a prolonged oxygen-generating phototherapy hydrogel.
    Zhou TJ; Xing L; Fan YT; Cui PF; Jiang HL
    J Control Release; 2019 Sep; 309():82-93. PubMed ID: 31344426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy.
    Shen Z; Xia J; Ma Q; Zhu W; Gao Z; Han S; Liang Y; Cao J; Sun Y
    Theranostics; 2020; 10(20):9132-9152. PubMed ID: 32802183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer.
    Liu J; Ai X; Cabral H; Liu J; Huang Y; Mi P
    Biomaterials; 2021 Jun; 273():120847. PubMed ID: 33932702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-Generating Hydrogels Overcome Tumor Hypoxia to Enhance Photodynamic/Gas Synergistic Therapy.
    Zhang M; Liu X; Mao Y; He Y; Xu J; Zheng F; Tan W; Rong S; Chen Y; Jia X; Li H
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27551-27563. PubMed ID: 35686947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conquering the Hypoxia Limitation for Photodynamic Therapy.
    Wan Y; Fu LH; Li C; Lin J; Huang P
    Adv Mater; 2021 Dec; 33(48):e2103978. PubMed ID: 34580926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotechnology-mediated photodynamic therapy: Focus on overcoming tumor hypoxia.
    Moloudi K; Abrahamse H; George BP
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(1):e1937. PubMed ID: 38072393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of melanoma using a nanoceria-based prolonged oxygen-generating phototherapy hydrogel.
    Zhang L; Liu X; Mao Y; Rong S; Chen Y; Qi Y; Cai Z; Li H
    Front Oncol; 2023; 13():1126094. PubMed ID: 37007107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia.
    Wang H; Guo Y; Wang C; Jiang X; Liu H; Yuan A; Yan J; Hu Y; Wu J
    Biomaterials; 2021 Feb; 269():120621. PubMed ID: 33383301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy.
    Hong L; Li J; Luo Y; Guo T; Zhang C; Ou S; Long Y; Hu Z
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu
    Su Z; Xu H; Zhang H; Jin S; Yang Z; Yan R; Wang Z; Wu X; Jin Y
    Bioconjug Chem; 2023 Jul; 34(7):1336-1347. PubMed ID: 37343132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Red Blood Cell Membrane-Coating Salidroside/Indocyanine Green Nanovesicles for High-Efficiency Hypoxic Targeting Phototherapy of Triple-Negative Breast Cancer.
    Pan Y; He Y; Zhao X; Pan Y; Meng X; Lv Z; Hu Z; Mou X; Cai Y
    Adv Healthc Mater; 2022 Sep; 11(17):e2200962. PubMed ID: 35735086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codelivery of High-Molecular-Weight Poly-porphyrins and HIF-1α Inhibitors for
    He J; Xia K; Zhao B; Song W; Zheng Y; Xiao G; Wu H; Zheng N
    Biomacromolecules; 2021 Nov; 22(11):4783-4793. PubMed ID: 34623134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial-Targeting Nanotrapper Captured Copper Ions to Alleviate Tumor Hypoxia for Amplified Photoimmunotherapy in Breast Cancer.
    Huang W; Yu M; Sun S; Yu L; Wen S; Liu Y; Peng Z; Hao H; Wang T; Wu M
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2166-2179. PubMed ID: 38170968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-storing DNA-based hydrogel remodels tumor microenvironments for laser-free photodynamic immunotherapy.
    Zhao H; Wang Z; Yang S; Zhang R; Guo J; Yang D
    Biomaterials; 2024 Sep; 309():122620. PubMed ID: 38788456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in
    Qin S; Xu Y; Li H; Chen H; Yuan Z
    Biomater Sci; 2021 Dec; 10(1):51-84. PubMed ID: 34882762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UCPs/Zn
    Zhang L; Yang M; Ji Y; Xiao K; Shi J; Wang L
    Biomater Sci; 2021 Mar; 9(6):2124-2136. PubMed ID: 33491011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy.
    de Keijzer MJ; de Klerk DJ; de Haan LR; van Kooten RT; Franchi LP; Dias LM; Kleijn TG; van Doorn DJ; Heger M;
    Methods Mol Biol; 2022; 2451():285-403. PubMed ID: 35505024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional Protein Hybrid Nanoplatform for Synergetic Photodynamic-Chemotherapy of Malignant Carcinoma by Homologous Targeting Combined with Oxygen Transport.
    Wu SY; Ye YX; Zhang Q; Kang QJ; Xu ZM; Ren SZ; Lin F; Duan YT; Xu HJ; Hu ZY; Yang SS; Zhu HL; Zou MJ; Wang ZC
    Adv Sci (Weinh); 2023 Feb; 10(5):e2203742. PubMed ID: 36541716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Alternating Irradiation Strategy-Driven Combination Therapy of PDT and RNAi for Highly Efficient Inhibition of Tumor Growth and Metastasis.
    Yue D; Cai X; Fan M; Zhu J; Tian J; Wu L; Jiang Q; Gu Z
    Adv Healthc Mater; 2021 Apr; 10(8):e2001850. PubMed ID: 33314663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment.
    Zhang Y; Tian S; Huang L; Li Y; Lu Y; Li H; Chen G; Meng F; Liu GL; Yang X; Tu J; Sun C; Luo L
    Nat Commun; 2022 Aug; 13(1):4553. PubMed ID: 35931666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.