These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31344790)

  • 41. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.
    Wu X; Shen J; Li Y; Lee KY
    ISA Trans; 2014 May; 53(3):699-708. PubMed ID: 24559835
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vibration-Based Fatigue Analysis of Octet-Truss Lattice Infill Blades for Utilization in Turbine Rotors.
    Hussain S; Ghopa WAW; Singh SSK; Azman AH; Abdullah S; Harun Z; Hishamuddin H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.
    Ge M; Fang L; Tian D
    PLoS One; 2015; 10(11):e0141848. PubMed ID: 26528815
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of the durability of composite tidal turbine blades.
    Davies P; Germain G; Gaurier B; Boisseau A; Perreux D
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120187. PubMed ID: 23319705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fuzzy decoupled-states multi-model identification of gas turbine operating variables through the use of their operating data.
    Aissat S; Hafaifa A; Iratni A; Hadroug N; Chen X
    ISA Trans; 2023 Feb; 133():384-396. PubMed ID: 35868912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synchronous Vibration Measurements for Shrouded Blades Based on Fiber Optical Sensors with Lenses in a Steam Turbine.
    Ye D; Duan F; Jiang J; Cheng Z; Niu G; Shan P; Zhang J
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomimetic Design of Turbine Blades for Ocean Current Power Generation.
    Hernández Montoya EE; Mendoza E; Stamhuis EJ
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decomposed Collaborative Modeling Approach for Probabilistic Fatigue Life Evaluation of Turbine Rotor.
    Huang Y; Bai GC; Song LK; Wang BW
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An approach to estimating product design time based on fuzzy v-support vector machine.
    Yan HS; Xu D
    IEEE Trans Neural Netw; 2007 May; 18(3):721-31. PubMed ID: 17526339
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incremental learning for ν-Support Vector Regression.
    Gu B; Sheng VS; Wang Z; Ho D; Osman S; Li S
    Neural Netw; 2015 Jul; 67():140-50. PubMed ID: 25933108
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodology.
    Meng Y; Rajagopal M; Kuntumalla G; Toro R; Zhao H; Chang HC; Sundar S; Salapaka S; Miljkovic N; Ferreira P; Sinha S; Shao C
    Math Biosci Eng; 2020 Oct; 17(6):7411-7427. PubMed ID: 33378903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Implementation of multi-criteria decision method for selection of suitable material for development of horizontal wind turbine blade for sustainable energy generation.
    Okokpujie IP; Okonkwo UC; Bolu CA; Ohunakin OS; Agboola MG; Atayero AA
    Heliyon; 2020 Jan; 6(1):e03142. PubMed ID: 31922051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamically Generated Hierarchical Neural Networks Designed With the Aid of Multiple Support Vector Regressors and PNN Architecture With Probabilistic Selection.
    Roh SB; Oh SK; Pedrycz W; Fu Z
    IEEE Trans Neural Netw Learn Syst; 2022 Apr; 33(4):1385-1399. PubMed ID: 33338020
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Water Droplet Erosion of Wind Turbine Blades: Mechanics, Testing, Modeling and Future Perspectives.
    Elhadi Ibrahim M; Medraj M
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.
    Tonutti M; Gras G; Yang GZ
    Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.
    Warid W; Hizam H; Mariun N; Abdul-Wahab NI
    PLoS One; 2016; 11(3):e0149589. PubMed ID: 26954783
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
    Xu BF; Wang TG; Yuan Y; Cao JF
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fuzzy Expert System based on a Novel Hybrid Stem Cell (HSC) Algorithm for Classification of Micro Array Data.
    Vijay SAA; GaneshKumar P
    J Med Syst; 2018 Feb; 42(4):61. PubMed ID: 29468412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PSO-GSA based fuzzy sliding mode controller for DFIG-based wind turbine.
    Bounar N; Labdai S; Boulkroune A
    ISA Trans; 2019 Feb; 85():177-188. PubMed ID: 30389242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.