BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31344802)

  • 1. Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis.
    Zielińska A; Ferreira NR; Durazzo A; Lucarini M; Cicero N; Mamouni SE; Silva AM; Nowak I; Santini A; Souto EB
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31344802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method.
    Pereira I; Zielińska A; Ferreira NR; Silva AM; Souto EB
    Int J Pharm; 2018 Oct; 549(1-2):261-270. PubMed ID: 30075252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN).
    Zielińska A; Ferreira NR; Feliczak-Guzik A; Nowak I; Souto EB
    Pharm Dev Technol; 2020 Sep; 25(7):832-844. PubMed ID: 32204628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®.
    Zielińska A; Martins-Gomes C; Ferreira NR; Silva AM; Nowak I; Souto EB
    Int J Pharm; 2018 Dec; 553(1-2):428-440. PubMed ID: 30385373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line.
    Campos JR; Fernandes AR; Sousa R; Fangueiro JF; Boonme P; Garcia ML; Silva AM; Naveros BC; Souto EB
    Pharm Dev Technol; 2019 Jun; 24(5):616-622. PubMed ID: 30477410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key production parameters for the development of solid lipid nanoparticles by high shear homogenization.
    Souto EB; Doktorovova S; Zielinska A; Silva AM
    Pharm Dev Technol; 2019 Nov; 24(9):1181-1185. PubMed ID: 31354002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid lipid nanoparticles optimized by 2
    Rigon RB; Gonçalez ML; Severino P; Alves DA; Santana MHA; Souto EB; Chorilli M
    Colloids Surf B Biointerfaces; 2018 Nov; 171():501-505. PubMed ID: 30081382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Solid Lipid Nanocarrier of Glibenclamide: A Factorial Design Approach with Response Surface Methodology.
    Pandey S; Patel P; Gupta A
    Curr Pharm Des; 2018; 24(16):1811-1820. PubMed ID: 29788881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants.
    Keck CM; Kovačević A; Müller RH; Savić S; Vuleta G; Milić J
    Int J Pharm; 2014 Oct; 474(1-2):33-41. PubMed ID: 25108048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing SLN and NLC by 2(2) full factorial design: effect of homogenization technique.
    Severino P; Santana MH; Souto EB
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1375-9. PubMed ID: 24364934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ergocalciferol loaded solid lipid nanoparticles.
    Patel MR; San Martin-Gonzalez MF
    J Food Sci; 2012 Jan; 77(1):N8-13. PubMed ID: 22260120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine.
    Qi C; Chen Y; Huang JH; Jin QZ; Wang XG
    J Sci Food Agric; 2012 Mar; 92(4):787-93. PubMed ID: 22101976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis.
    Musielak E; Feliczak-Guzik A; Nowak I
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters.
    Shah B; Khunt D; Bhatt H; Misra M; Padh H
    Eur J Pharm Sci; 2015 Oct; 78():54-66. PubMed ID: 26143262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of DH-I-180-3 loaded lipid nanoparticle for photodynamic therapy.
    Park JH; Ban SJ; Ahmed T; Choi HS; Yoon HE; Yoon JH; Choi HK
    Int J Pharm; 2015 Aug; 491(1-2):393-401. PubMed ID: 26149935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hesperidin-Loaded Solid Lipid Nanoparticles: Development and Physicochemical Properties Evaluation.
    Ferrari PC; Correia MK; Somer A; Ribeiro MA; Astrath NGC; Sato F; Novatski A
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4747-4757. PubMed ID: 30913782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diazepam-loaded solid lipid nanoparticles: design and characterization.
    Abdelbary G; Fahmy RH
    AAPS PharmSciTech; 2009; 10(1):211-9. PubMed ID: 19277870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.
    Kovacevic A; Savic S; Vuleta G; Müller RH; Keck CM
    Int J Pharm; 2011 Mar; 406(1-2):163-72. PubMed ID: 21219990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations.
    Uner M; Wissing SA; Yener G; Müller RH
    Pharmazie; 2004 Apr; 59(4):331-2. PubMed ID: 15125588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation optimization of erythromycin solid lipid nanocarrier using response surface methodology.
    Sahu AK; Kumar T; Jain V
    Biomed Res Int; 2014; 2014():689391. PubMed ID: 25045692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.