BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31344870)

  • 1. The Development of a Sorghum Bran-Based Biorefining Process to Convert Sorghum Bran into Value Added Products.
    Makanjuola O; Greetham D; Zou X; Du C
    Foods; 2019 Jul; 8(8):. PubMed ID: 31344870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate.
    Anto H; Trivedi UB; Patel KC
    Bioresour Technol; 2006 Jul; 97(10):1161-6. PubMed ID: 16006122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation.
    Pleissner D; Kwan TH; Lin CS
    Bioresour Technol; 2014 Apr; 158():48-54. PubMed ID: 24583214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources.
    Pavezzi FC; Gomes E; da Silva R
    Braz J Microbiol; 2008 Jan; 39(1):108-14. PubMed ID: 24031189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of agricultural wastes of Aspergillus awamori for the production of glucoamylase.
    Attia RM; Ali SA
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(4):322-5. PubMed ID: 333823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric optimization of feruloyl esterase production from Aspergillus terreus strain GA2 isolated from tropical agro-ecosystems cultivating sweet sorghum.
    Kumar CG; Kamle A; Mongolla P; Joseph J
    J Microbiol Biotechnol; 2011 Sep; 21(9):947-53. PubMed ID: 21952371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077.
    Bhatia L; Johri S
    Indian J Exp Biol; 2015 Dec; 53(12):819-27. PubMed ID: 26742327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-site production of crude glucoamylase for kitchen waste hydrolysis.
    Wang XQ; Wang QH; Liu YY; Ma HZ
    Waste Manag Res; 2010 Jun; 28(6):539-44. PubMed ID: 20015936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi.
    Tsakona S; Kopsahelis N; Chatzifragkou A; Papanikolaou S; Kookos IK; Koutinas AA
    J Biotechnol; 2014 Nov; 189():36-45. PubMed ID: 25150217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste.
    Martău GA; Unger P; Schneider R; Venus J; Vodnar DC; López-Gómez JP
    J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production.
    Han W; Ye M; Zhu AJ; Zhao HT; Li YF
    Bioresour Technol; 2015 Sep; 191():24-9. PubMed ID: 25978853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of gluco-amylase production from
    Jain D; Katyal P
    3 Biotech; 2018 Feb; 8(2):101. PubMed ID: 29430363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus.
    Kunamneni A; Permaul K; Singh S
    J Biosci Bioeng; 2005 Aug; 100(2):168-71. PubMed ID: 16198259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds.
    Farid MA; El-Enshasy HA; Noor El-Deen AM
    J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cereal-based biorefinery development: integrated enzyme production for cereal flour hydrolysis.
    Koutinas AA; Arifeen N; Wang R; Webb C
    Biotechnol Bioeng; 2007 May; 97(1):61-72. PubMed ID: 17009318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel glucoamylase activated by manganese and calcium produced in submerged fermentation by Aspergillus phoenicis.
    Benassi VM; Pasin TM; Facchini FD; Jorge JA; Teixeira de Moraes Polizeli Mde L
    J Basic Microbiol; 2014 May; 54(5):333-9. PubMed ID: 23681744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Glucoamylase from Novel Strain of
    Nayab DE; Akhtar S; Bangash N; Nisa WU; Hayat MT; Zulfiqar A; Niaz M; Qayyum A; Syed A; Bahkali AH; Elgorban AM
    Biomed Res Int; 2022; 2022():2943790. PubMed ID: 36337838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid.
    Du C; Lin SK; Koutinas A; Wang R; Dorado P; Webb C
    Bioresour Technol; 2008 Nov; 99(17):8310-5. PubMed ID: 18434138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of an (Hemi) Cellulolytic Enzymatic Extract Produced by Aspergilli Species Consortium in the Saccharification of Biomass Sorghum.
    Dos Santos BV; Rodrigues PO; Albuquerque CJB; Pasquini D; Baffi MA
    Appl Biochem Biotechnol; 2019 Sep; 189(1):37-48. PubMed ID: 30863986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.
    Dorado MP; Lin SK; Koutinas A; Du C; Wang R; Webb C
    J Biotechnol; 2009 Aug; 143(1):51-9. PubMed ID: 19539669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.