These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31344876)

  • 1. Gas Permeability of Cellulose Aerogels with a Designed Dual Pore Space System.
    Ganesan K; Barowski A; Ratke L
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31344876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Features of the Porous Network of Poly(Urethane) Aerogels via Gas Permeability Measurements.
    Beyerlein GS; Ratke L
    Macromol Rapid Commun; 2024 Jul; 45(13):e2400014. PubMed ID: 38575152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton.
    Edwards JV; Fontenot KR; Prevost NT; Pircher N; Liebner F; Condon BD
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H
    Schimper CB; Pachschwoell PS; Hettegger H; Neouze MA; Nedelec JM; Wendland M; Rosenau T; Liebner F
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32272769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose aerogels from aqueous alkali hydroxide-urea solution.
    Cai J; Kimura S; Wada M; Kuga S; Zhang L
    ChemSusChem; 2008; 1(1-2):149-54. PubMed ID: 18605678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil.
    Jin H; Kettunen M; Laiho A; Pynnönen H; Paltakari J; Marmur A; Ikkala O; Ras RH
    Langmuir; 2011 Mar; 27(5):1930-4. PubMed ID: 21247181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates.
    Liu S; Yan Q; Tao D; Yu T; Liu X
    Carbohydr Polym; 2012 Jun; 89(2):551-7. PubMed ID: 24750757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials.
    Xu X; Dong F; Yang X; Liu H; Guo L; Qian Y; Wang A; Wang S; Luo J
    J Agric Food Chem; 2019 Jan; 67(2):637-643. PubMed ID: 30601645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt.
    Schestakow M; Karadagli I; Ratke L
    Carbohydr Polym; 2016 Feb; 137():642-649. PubMed ID: 26686174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose.
    Revin VV; Pestov NA; Shchankin MV; Mishkin VP; Platonov VI; Uglanov DA
    Biomacromolecules; 2019 Mar; 20(3):1401-1411. PubMed ID: 30768255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation.
    Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents.
    Korhonen JT; Kettunen M; Ras RH; Ikkala O
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1813-6. PubMed ID: 21627309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the nanostructure of anisotropic cellulose aerogels upon compression.
    Rennhofer H; Plappert SF; Lichtenegger HC; Bernstorff S; Fitzka M; Nedelec JM; Liebner FW
    Soft Matter; 2019 Oct; 15(41):8372-8380. PubMed ID: 31588953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact-active antibacterial aerogels from cellulose nanofibrils.
    Henschen J; Illergård J; Larsson PA; Ek M; Wågberg L
    Colloids Surf B Biointerfaces; 2016 Oct; 146():415-22. PubMed ID: 27391038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Porous Networks in Polyimide Aerogels for Airborne Nanoparticle Filtration.
    Zhai C; Jana SC
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30074-30082. PubMed ID: 28806054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers.
    He X; Chen T; Jiang T; Wang C; Luan Y; Liu P; Liu Z
    Carbohydr Polym; 2021 May; 260():117790. PubMed ID: 33712138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting.
    Jaafar Z; Quelennec B; Moreau C; Lourdin D; Maigret JE; Pontoire B; D'orlando A; Coradin T; Duchemin B; Fernandes FM; Cathala B
    Carbohydr Polym; 2020 Nov; 247():116642. PubMed ID: 32829789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.