These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Application of a volar static splint in poststroke spasticity of the upper limb. Pizzi A; Carlucci G; Falsini C; Verdesca S; Grippo A Arch Phys Med Rehabil; 2005 Sep; 86(9):1855-9. PubMed ID: 16181954 [TBL] [Abstract][Full Text] [Related]
43. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Taveggia G; Borboni A; Salvi L; Mulé C; Fogliaresi S; Villafañe JH; Casale R Eur J Phys Rehabil Med; 2016 Dec; 52(6):767-773. PubMed ID: 27406879 [TBL] [Abstract][Full Text] [Related]
44. Spastic co-contraction, rather that spasticity, is associated with impaired active function in adults with acquired brain injury: A pilot study. Chalard A; Amarantini D; Tisseyre J; Marque P; Tallet J; Gasq D J Rehabil Med; 2019 Apr; 51(4):307-311. PubMed ID: 30768672 [TBL] [Abstract][Full Text] [Related]
45. Spasticity after traumatic spinal cord injury: nature, severity, and location. Sköld C; Levi R; Seiger A Arch Phys Med Rehabil; 1999 Dec; 80(12):1548-57. PubMed ID: 10597805 [TBL] [Abstract][Full Text] [Related]
46. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717 [TBL] [Abstract][Full Text] [Related]
47. Transverse forces versus modified ashworth scale for upper limb flexion/extension in para-sagittal plane. Seth N; Johnson D; Abdullah HA IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():765-770. PubMed ID: 28813912 [TBL] [Abstract][Full Text] [Related]
49. Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report. Yozbatiran N; Berliner J; O'Malley MK; Pehlivan AU; Kadivar Z; Boake C; Francisco GE J Rehabil Med; 2012 Feb; 44(2):186-8. PubMed ID: 22334347 [TBL] [Abstract][Full Text] [Related]
50. Upper limb effort does not increase maximal voluntary muscle activation in individuals with incomplete spinal cord injury. Huang HJ; Ferris DP Clin Neurophysiol; 2009 Sep; 120(9):1741-9. PubMed ID: 19699677 [TBL] [Abstract][Full Text] [Related]
51. Hand Passive Mobilization Performed with Robotic Assistance: Acute Effects on Upper Limb Perfusion and Spasticity in Stroke Survivors. Gobbo M; Gaffurini P; Vacchi L; Lazzarini S; Villafane J; Orizio C; Negrini S; Bissolotti L Biomed Res Int; 2017; 2017():2796815. PubMed ID: 29094043 [TBL] [Abstract][Full Text] [Related]
52. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S; Celia A; Rosati G; Armani M Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510 [TBL] [Abstract][Full Text] [Related]
53. The effects of upper extremity progressive resistance and endurance exercises in patients with spinal cord injury. Dost G; Dulgeroglu D; Yildirim A; Ozgirgin N J Back Musculoskelet Rehabil; 2014; 27(4):419-26. PubMed ID: 24614829 [TBL] [Abstract][Full Text] [Related]
54. Virtual Rehabilitation of Elbow Flexion Following Nerve Transfer Reconstruction for Brachial Plexus Injuries Using the Single-Joint Hybrid Assisted Limb. Doi K; Yii Chia DS; Hattori Y; Sakamoto S J Hand Surg Glob Online; 2022 Mar; 4(2):97-102. PubMed ID: 35434571 [TBL] [Abstract][Full Text] [Related]
55. [Botulinum toxin treatment of hip adductor spasticity in multiple sclerosis]. Wissel J; Entner T Wien Klin Wochenschr; 2001; 113 Suppl 4():20-4. PubMed ID: 15506048 [TBL] [Abstract][Full Text] [Related]
56. Intermittent theta-burst stimulation for upper-limb dysfunction and spasticity in spinal cord injury: a single-blind randomized feasibility study. Gharooni AA; Nair KPS; Hawkins D; Scivill I; Hind D; Hariharan R Spinal Cord; 2018 Aug; 56(8):762-768. PubMed ID: 29895874 [TBL] [Abstract][Full Text] [Related]
57. Extracorporeal Shock Wave Therapy reduces upper limb spasticity and improves motricity in patients with chronic hemiplegia: a case series. Troncati F; Paci M; Myftari T; Lombardi B NeuroRehabilitation; 2013; 33(3):399-405. PubMed ID: 23949081 [TBL] [Abstract][Full Text] [Related]
58. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study. Kadivar Z; Sullivan JL; Eng DP; Pehlivan AU; O'Malley MK; Yozbatiran N; Francisco GE IEEE Int Conf Rehabil Robot; 2011; 2011():5975429. PubMed ID: 22275630 [TBL] [Abstract][Full Text] [Related]
59. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results. Mazzoleni S; Battini E; Rustici A; Stampacchia G IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833 [TBL] [Abstract][Full Text] [Related]
60. Gait Training Using a Wearable Robotic Device for Non-Traumatic Spinal Cord Injury: A Case Report. Yoshikawa K; Mutsuzaki H; Koseki K; Endo Y; Hashizume Y; Nakazawa R; Aoyama T; Yozu A; Kohno Y Geriatr Orthop Surg Rehabil; 2020; 11():2151459320956960. PubMed ID: 33194254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]