These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31345074)

  • 41. The Absorb bioresorbable vascular scaffold for the treatment of coronary artery disease.
    Collet C; de Winter RJ; Onuma Y; Serruys PW
    Expert Opin Drug Deliv; 2016 Oct; 13(10):1489-99. PubMed ID: 27550021
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo chronic scaffolding force of a resorbable magnesium scaffold.
    Forkmann C; Pritsch M; Baumann-Zumstein P; Lootz D; Joner M
    J Biomech; 2024 Feb; 164():111988. PubMed ID: 38364489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioresorbable Scaffolds versus Metallic Stents in Routine PCI.
    Wykrzykowska JJ; Kraak RP; Hofma SH; van der Schaaf RJ; Arkenbout EK; IJsselmuiden AJ; Elias J; van Dongen IM; Tijssen RYG; Koch KT; Baan J; Vis MM; de Winter RJ; Piek JJ; Tijssen JGP; Henriques JPS;
    N Engl J Med; 2017 Jun; 376(24):2319-2328. PubMed ID: 28402237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioresorbable vascular scaffolds for the treatment of coronary artery disease: Clinical outcomes from randomized controlled trials.
    Rizik DG; Hermiller JB; Kereiakes DJ
    Catheter Cardiovasc Interv; 2016 Nov; 88(S1):21-30. PubMed ID: 27797464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current perspectives on the role of bioresorbable scaffolds in the management of coronary artery disease.
    Dziewierz A; Dudek D
    Kardiol Pol; 2018; 76(7):1043-1054. PubMed ID: 30251247
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The ABSORB bioresorbable vascular scaffold: A novel, fully resorbable drug-eluting stent: Current concepts and overview of clinical evidence.
    Rizik DG; Hermiller JB; Kereiakes DJ
    Catheter Cardiovasc Interv; 2015 Oct; 86(4):664-77. PubMed ID: 26386235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Real-World Bioresorbable Vascular Scaffold Experience Compared With Second-Generation Metallic Drug-Eluting Stents in Complex Coronary Lesions.
    Okamoto N; Ueda H; Yoshimura T; Chamaria S; Bhatheja S; Vengrenyuk Y; Rabiei S; Barrientos Y; Kapur V; Barman N; Sweeny J; Baber U; Mehran R; Sharma SK; Kini AS
    J Invasive Cardiol; 2018 Jul; 30(7):251-255. PubMed ID: 29656280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of acute versus stable coronary syndrome in patients treated with the Magmaris scaffold: Two-year results from the Magmaris Multicenter Italian Registry.
    Galli S; Troiano S; Palloshi A; Rapetto C; Pisano F; Aprigliano G; Leoncini M; Ravagnani P; Del Maestro M; Montorsi P
    Cardiovasc Revasc Med; 2023 Dec; 57():53-59. PubMed ID: 37543502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioresorbable drug-eluting scaffolds for treatment of vascular disease.
    Suwannasom P; Sotomi Y; Tateishi H; Tenekecioglu E; Zeng Y; Kraak RP; Wykrzykowska JJ; De Winter RJ; Serruys PW; Onuma Y
    Expert Opin Drug Deliv; 2016; 13(5):725-39. PubMed ID: 26865247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-year clinical outcomes of resorbable magnesium scaffold versus conventional drug-eluting stents in ST-segment elevation myocardial infarction: A propensity score matching analysis.
    Koliastasis L; Bennett J; Xaplanteris P; Skalidis I; Guédès A; Demeure F; Vandeloo B; Dugauquier C; Picard F; Warne DW; Pilgrim T; Iglesias JF; de Hemptinne Q
    Hellenic J Cardiol; 2024; 78():84-86. PubMed ID: 38134970
    [No Abstract]   [Full Text] [Related]  

  • 51. Head-to-head comparison of the neointimal response between metallic and bioresorbable everolimus-eluting scaffolds using optical coherence tomography.
    Gomez-Lara J; Brugaletta S; Farooq V; Onuma Y; Diletti R; Windecker S; Thuesen L; McClean D; Koolen J; Whitbourn R; Dudek D; Smits PC; Chevalier B; Regar E; Veldhof S; Rapoza R; Ormiston JA; Garcia-Garcia HM; Serruys PW
    JACC Cardiovasc Interv; 2011 Dec; 4(12):1271-80. PubMed ID: 22192368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The bioresorbable coronary scaffold].
    Hassell ME; van de Hoef TP; Damman P; Delewi R; Serruys PW; Piek JJ
    Ned Tijdschr Geneeskd; 2012; 156(36):A4994. PubMed ID: 22951133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro performance investigation of bioresorbable scaffolds - Standard tests for vascular stents and beyond.
    Schmidt W; Behrens P; Brandt-Wunderlich C; Siewert S; Grabow N; Schmitz KP
    Cardiovasc Revasc Med; 2016 Sep; 17(6):375-83. PubMed ID: 27266902
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioresorbable scaffolds for the treatment of coronary artery disease: current status and future perspective.
    Kraak RP; Grundeken MJ; Koch KT; de Winter RJ; Wykrzykowska JJ
    Expert Rev Med Devices; 2014 Sep; 11(5):467-80. PubMed ID: 25087771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioresorbable Scaffolds for Coronary Artery Disease.
    Nathan A; Kobayashi T; Kolansky DM; Wilensky RL; Giri J
    Curr Cardiol Rep; 2017 Jan; 19(1):5. PubMed ID: 28108898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioresorbable vascular scaffolds for the treatment of coronary artery disease: what have we learned from randomized-controlled clinical trials?
    Rizik DG; Hermiller JB; Simonton CA; Klassen KJ; Kereiakes DJ
    Coron Artery Dis; 2017 Jan; 28(1):77-89. PubMed ID: 27561169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. First-in-human evaluation of a bioabsorbable polymer-coated sirolimus-eluting stent: imaging and clinical results of the DESSOLVE I Trial (DES with sirolimus and a bioabsorbable polymer for the treatment of patients with de novo lesion in the native coronary arteries).
    Ormiston J; Webster M; Stewart J; Vrolix M; Whitbourn R; Donohoe D; Knape C; Lansky A; Attizzani GF; Fitzgerald P; Kandzari DE; Wijns W
    JACC Cardiovasc Interv; 2013 Oct; 6(10):1026-34. PubMed ID: 24055443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The State of the Absorb Bioresorbable Scaffold: Consensus From an Expert Panel.
    Bangalore S; Bezerra HG; Rizik DG; Armstrong EJ; Samuels B; Naidu SS; Grines CL; Foster MT; Choi JW; Bertolet BD; Shah AP; Torguson R; Avula SB; Wang JC; Zidar JP; Maksoud A; Kalyanasundaram A; Yakubov SJ; Chehab BM; Spaedy AJ; Potluri SP; Caputo RP; Kondur A; Merritt RF; Kaki A; Quesada R; Parikh MA; Toma C; Matar F; DeGregorio J; Nicholson W; Batchelor W; Gollapudi R; Korngold E; Sumar R; Chrysant GS; Li J; Gordon JB; Dave RM; Attizzani GF; Stys TP; Gigliotti OS; Murphy BE; Ellis SG; Waksman R
    JACC Cardiovasc Interv; 2017 Dec; 10(23):2349-2359. PubMed ID: 29216997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fully bioresorbable drug-eluting coronary scaffolds: A review.
    Charpentier E; Barna A; Guillevin L; Juliard JM
    Arch Cardiovasc Dis; 2015; 108(6-7):385-97. PubMed ID: 26113479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical Coherence Tomography of Magnesium Bioresorbable Scaffold Restenosis.
    García-Blas S; Miñana G; Sanchis J
    Rev Esp Cardiol (Engl Ed); 2018 Dec; 71(12):1069. PubMed ID: 29223376
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.