These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31345224)

  • 1. Four thiol-oxidoreductases involved in the formation of disulphide bonds in the Streptomyces lividans TK21 secretory proteins.
    Gullón S; Marín S; Mellado RP
    Microb Cell Fact; 2019 Jul; 18(1):126. PubMed ID: 31345224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional identification of a
    Vicente RL; Marín S; Valverde JR; Palomino C; Mellado RP; Gullón S
    Open Biol; 2019 Oct; 9(10):190201. PubMed ID: 31662098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans.
    Valverde JR; Gullón S; Mellado RP
    BMC Microbiol; 2018 Jun; 18(1):59. PubMed ID: 29898665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.
    Gullón S; Marín S; Mellado RP
    PLoS One; 2015; 10(7):e0133645. PubMed ID: 26200356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins.
    Andersen CL; Matthey-Dupraz A; Missiakas D; Raina S
    Mol Microbiol; 1997 Oct; 26(1):121-32. PubMed ID: 9383195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic metabolic modelling of overproduced protein secretion in Streptomyces lividans using adaptive DFBA.
    Valverde JR; Gullón S; García-Herrero CA; Campoy I; Mellado RP
    BMC Microbiol; 2019 Oct; 19(1):233. PubMed ID: 31655540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans.
    Gullón S; Vicente RL; Valverde JR; Marín S; Mellado RP
    Mol Biotechnol; 2015 Oct; 57(10):931-8. PubMed ID: 26202494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel two-component system involved in secretion stress response in Streptomyces lividans.
    Gullón S; Vicente RL; Mellado RP
    PLoS One; 2012; 7(11):e48987. PubMed ID: 23155440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans.
    Schaerlaekens K; Lammertyn E; Geukens N; De Keersmaeker S; Anné J; Van Mellaert L
    J Biotechnol; 2004 Sep; 112(3):279-88. PubMed ID: 15313005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria.
    Kouwen TR; van der Goot A; Dorenbos R; Winter T; Antelmann H; Plaisier MC; Quax WJ; van Dijl JM; Dubois JY
    Mol Microbiol; 2007 May; 64(4):984-99. PubMed ID: 17501922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper secretion of Thermobifida fusca β-glucosidase via a Tat-dependent signal peptide using Streptomyces lividans.
    Miyazaki T; Noda S; Tanaka T; Kondo A
    Microb Cell Fact; 2013 Oct; 12():88. PubMed ID: 24083334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans.
    Hamed MB; Karamanou S; Ólafsdottir S; Basílio JSM; Simoens K; Tsolis KC; Van Mellaert L; Guðmundsdóttir EE; Hreggvidsson GO; Anné J; Bernaerts K; Fridjonsson OH; Economou A
    Microb Cell Fact; 2017 Dec; 16(1):232. PubMed ID: 29274637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Three Streptomyces lividans HtrA-Like Proteases Involved in the Secretion Stress Response Act in a Cooperative Manner.
    Vicente RL; Gullón S; Marín S; Mellado RP
    PLoS One; 2016; 11(12):e0168112. PubMed ID: 27977736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approaches to achieve high level enzyme production in Streptomyces lividans.
    Sevillano L; Vijgenboom E; van Wezel GP; Díaz M; Santamaría RI
    Microb Cell Fact; 2016 Feb; 15():28. PubMed ID: 26846788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans.
    Gullón S; Arranz EI; Mellado RP
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):10069-80. PubMed ID: 24068336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of protease mutations on the production of xylanases in Streptomyces lividans.
    Arias E; Li H; Morosoli R
    Can J Microbiol; 2007 Jun; 53(6):695-701. PubMed ID: 17668029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in xylanase production by Streptomyces lividans through simultaneous use of the Sec- and Tat-dependent protein export systems.
    Gauthier C; Li H; Morosoli R
    Appl Environ Microbiol; 2005 Jun; 71(6):3085-92. PubMed ID: 15933005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon.
    Paget MS; Molle V; Cohen G; Aharonowitz Y; Buttner MJ
    Mol Microbiol; 2001 Nov; 42(4):1007-20. PubMed ID: 11737643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization.
    Liu S; Wang M; Du G; Chen J
    BMC Biotechnol; 2016 Oct; 16(1):75. PubMed ID: 27793152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Streptomyces lividans cytoplasmic signal recognition particle receptor FtsY is involved in protein secretion.
    Palomino C; Mellado RP
    J Mol Microbiol Biotechnol; 2005; 9(1):57-62. PubMed ID: 16254447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.