These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3134545)

  • 21. A plasmid encoding a combination of mosquito-larvicidal genes from Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus confers toxicity against a broad range of mosquito larvae when expressed in Gram-negative bacteria.
    Tanapongpipat S; Luxananil P; Promdonkoy B; Chewawiwat N; Audtho M; Panyim S
    FEMS Microbiol Lett; 2003 Nov; 228(2):259-63. PubMed ID: 14638432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Culex quinquefasciatus membrane-bound alkaline phosphatase is a putative receptor for Lysinibacillus sphaericus Tpp49Aa1 toxin.
    Guo Q; Li W; Niu Y; Dai X; Chen L
    Insect Biochem Mol Biol; 2024 Jan; 164():104044. PubMed ID: 38036275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alternative method for preservation of mosquito larvae to study binding mechanisms of Bacillus sphaericus binary toxin.
    Poopathi S; Charles JF; Nielsen-LeRoux C
    J Invertebr Pathol; 2002 Feb; 79(2):132-4. PubMed ID: 12095245
    [No Abstract]   [Full Text] [Related]  

  • 24. Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins.
    Berry C; Hindley J; Ehrhardt AF; Grounds T; de Souza I; Davidson EW
    J Bacteriol; 1993 Jan; 175(2):510-8. PubMed ID: 8419297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular analysis of Culex quinquefasciatus larvae responses to Lysinibacillus sphaericus Bin toxin.
    Tangsongcharoen C; Jupatanakul N; Promdonkoy B; Dimopoulos G; Boonserm P
    PLoS One; 2017; 12(4):e0175473. PubMed ID: 28406958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Bacillus sphaericus 1593 toxin on choline acetyl transferase and mitochondrial oxidative activities of the mosquito larvae.
    Narasu ML; Gopinathan KP
    Indian J Biochem Biophys; 1988 Jun; 25(3):253-6. PubMed ID: 3235102
    [No Abstract]   [Full Text] [Related]  

  • 27. Ultrastructure of midgut events in the pathogenesis of Bacillus sphaericus strain SSII-1 infections of Culex pipiens quinquefasciatus larvae.
    Davidson EW
    Can J Microbiol; 1979 Feb; 25(2):178-84. PubMed ID: 436015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The effect of water temperature on the action of bacterial insecticides against mosquito larvae].
    Rasnitsyn SP; Voĭtsik AA; Iasiukevich VV
    Med Parazitol (Mosk); 1993; (1):8-10. PubMed ID: 8336659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inheritance and mechanism of resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from China and Brazil.
    Oliveira CM; Silva-Filha MH; Nielsen-Leroux C; Pei G; Yuan Z; Regis L
    J Med Entomol; 2004 Jan; 41(1):58-64. PubMed ID: 14989346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored α-glucosidase, which does not bind to the insecticidal binary toxin.
    Ferreira LM; Romão TP; de-Melo-Neto OP; Silva-Filha MH
    Insect Biochem Mol Biol; 2010 Aug; 40(8):604-10. PubMed ID: 20685335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins.
    Baumann P; Clark MA; Baumann L; Broadwell AH
    Microbiol Rev; 1991 Sep; 55(3):425-36. PubMed ID: 1682792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyt1Ab1 and Cyt2Ba1 from Bacillus thuringiensis subsp. medellin and B. thuringiensis subsp. israelensis Synergize Bacillus sphaericus against Aedes aegypti and resistant Culex quinquefasciatus (Diptera: Culicidae).
    Wirth MC; Delécluse A; Walton WE
    Appl Environ Microbiol; 2001 Jul; 67(7):3280-4. PubMed ID: 11425753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression.
    Darboux I; Nielsen-LeRoux C; Charles JF; Pauron D
    Insect Biochem Mol Biol; 2001 Sep; 31(10):981-90. PubMed ID: 11483434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterization of mosquitocidal Bacillus sphaericus isolated from Tamil Nadu, India.
    Prabhu DI; Sankar SG; Vasan PT; Piriya PS; Selvan BK; Vennison SJ
    Acta Trop; 2013 Sep; 127(3):158-64. PubMed ID: 23648218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single nucleotide deletion of cqm1 gene results in the development of resistance to Bacillus sphaericus in Culex quinquefasciatus.
    Guo QY; Cai QX; Yan JP; Hu XM; Zheng DS; Yuan ZM
    J Insect Physiol; 2013 Sep; 59(9):967-73. PubMed ID: 23871751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of cross-resistance to Mtx1 from Bacillus sphaericus in B. sphaericus-resistant Culex quinquefasciatus (Diptera: Culicidae).
    Wei S; Cai Q; Cai Y; Yuan Z
    Pest Manag Sci; 2007 Feb; 63(2):190-3. PubMed ID: 17103380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus+Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae).
    Wirth MC; Jiannino JA; Federici BA; Walton WE
    J Invertebr Pathol; 2005 Feb; 88(2):154-62. PubMed ID: 15766932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae).
    Wirth MC; Walton WE; Federici BA
    J Med Entomol; 2000 May; 37(3):401-7. PubMed ID: 15535584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding properties of Bacillus thuringiensis Cry4A toxin to the apical microvilli of larval midgut of Culex pipiens.
    Yamagiwa M; Kamauchi S; Okegawa T; Esaki M; Otake K; Amachi T; Komano T; Sakai H
    Biosci Biotechnol Biochem; 2001 Nov; 65(11):2419-27. PubMed ID: 11791714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae.
    Fernandez LE; Aimanova KG; Gill SS; Bravo A; Soberón M
    Biochem J; 2006 Feb; 394(Pt 1):77-84. PubMed ID: 16255715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.