These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31345767)

  • 21. The Ultra-Structural Similarities between Cryptosporidium parvum and the Gregarines.
    Aldeyarbi HM; Karanis P
    J Eukaryot Microbiol; 2016; 63(1):79-85. PubMed ID: 26173708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of gregarines (Apicomplexa: Sporozoa) on survival and weight loss of Victorwithius similis (Arachnida: Pseudoscorpiones).
    Bollatti F; Ceballos A
    J Invertebr Pathol; 2014 Mar; 117():13-8. PubMed ID: 24480672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromera velia: The Missing Link in the Evolution of Parasitism.
    Weatherby K; Carter D
    Adv Appl Microbiol; 2013; 85():119-44. PubMed ID: 23942150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (apicomplexa).
    Wakeman KC; Heintzelman MB; Leander BS
    Protist; 2014 Aug; 165(4):493-511. PubMed ID: 24998785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a divergent environmental DNA sequence clade using the phylogeny of gregarine parasites (Apicomplexa) from crustacean hosts.
    Rueckert S; Simdyanov TG; Aleoshin VV; Leander BS
    PLoS One; 2011 Mar; 6(3):e18163. PubMed ID: 21483868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery.
    Boisard J; Duvernois-Berthet E; Duval L; Schrével J; Guillou L; Labat A; Le Panse S; Prensier G; Ponger L; Florent I
    BMC Genomics; 2022 Jul; 23(1):485. PubMed ID: 35780080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenomic diversity of archigregarine apicomplexans.
    Lax G; Park E; Na I; Jacko-Reynolds V; Kwong WK; House CSE; Trznadel M; Wakeman K; Leander BS; Keeling P
    Open Biol; 2024 Sep; 14(9):240141. PubMed ID: 39317333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The apicoplast: a new member of the plastid family.
    Maréchal E; Cesbron-Delauw MF
    Trends Plant Sci; 2001 May; 6(5):200-5. PubMed ID: 11335172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoparasitism as an Intermediate State in the Evolution of Apicomplexan Parasites.
    Oborník M
    Trends Parasitol; 2020 Sep; 36(9):727-734. PubMed ID: 32680786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nephromyces, a beneficial apicomplexan symbiont in marine animals.
    Saffo MB; McCoy AM; Rieken C; Slamovits CH
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16190-5. PubMed ID: 20736348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Gregarina sp. parasitism on the susceptibility of Blattella germanica to some control agents.
    Lopes RB; Alves SB
    J Invertebr Pathol; 2005 Mar; 88(3):261-4. PubMed ID: 15955347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preface: Recent Developments in Taxonomy and Biodiversity of Symbiotic Copepoda (Crustacea)-A Volume in Celebration of the Career of Prof. Il-Hoi Kim.
    Huys R
    Zootaxa; 2016 Oct; 4174(1):6-9. PubMed ID: 27811786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Phylogenetic Positions and Ultrastructure of Marine Gregarines (Apicomplexa) Cuspisella ishikariensis n. gen., n. sp. and Loxomorpha cf. harmothoe from Western Pacific scaleworms (Polynoidae).
    Iritani D; Horiguchi T; Wakeman KC
    J Eukaryot Microbiol; 2018 Jul; 65(5):637-647. PubMed ID: 29399925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences.
    Carreno RA; Martin DS; Barta JR
    Parasitol Res; 1999 Nov; 85(11):899-904. PubMed ID: 10540950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coinfection of slime feather duster worms (Annelida,
    Park E; Leander B
    Parasitology; 2024 Apr; 151(4):400-411. PubMed ID: 38465385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Phylogenetic Positions of Two New Marine Gregarines (Apicomplexa)-Paralecudina anankea n. sp. and Lecudina caspera n. sp.-from the Intestine of Lumbrineris inflata (Polychaeta) Show Patterns of Co-evolution.
    Iritani D; Wakeman KC; Leander BS
    J Eukaryot Microbiol; 2018 Mar; 65(2):211-219. PubMed ID: 28833883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What is the difference between marine and limnetic-terrestrial associations of nematodes with invertebrates?
    Tchesunov AV; Ivanenko VN
    Integr Zool; 2022 Jul; 17(4):481-510. PubMed ID: 34605178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Some peculiarities of the relationships between parasitic copepods and their invertebrate hosts].
    Marchenkov AV
    Parazitologiia; 2001; 35(5):406-28. PubMed ID: 11871255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repeated secondary loss of adaptin complex genes in the Apicomplexa.
    Nevin WD; Dacks JB
    Parasitol Int; 2009 Mar; 58(1):86-94. PubMed ID: 19146987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversity of extracellular proteins during the transition from the 'proto-apicomplexan' alveolates to the apicomplexan obligate parasites.
    Templeton TJ; Pain A
    Parasitology; 2016 Jan; 143(1):1-17. PubMed ID: 26585326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.