These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3134586)

  • 41. Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C.
    Oraevsky AA; Jacques SL; Esenaliev RO; Tittel FK
    Lasers Surg Med; 1996; 18(3):231-40. PubMed ID: 8778517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linear verrucous epidermal nevi-effects of carbon dioxide laser therapy.
    Borzecki A; Strus-Rosińska B; Raszewska-Famielec M; Sajdak-Wojtaluk A; Pilat P
    J Cosmet Laser Ther; 2016 Oct; 18(6):348-51. PubMed ID: 27183476
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe.
    Yu PK; Miller J; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1587-93. PubMed ID: 16565396
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Skin graft take and healing following 193-nm excimer, continuous-wave carbon dioxide (CO2), pulsed CO2, or pulsed holmium: YAG laser ablation of the graft bed.
    Green HA; Burd EE; Nishioka NS; Compton CC
    Arch Dermatol; 1993 Aug; 129(8):979-88. PubMed ID: 8352622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of dual-optical pulses with temporal energy distribution on laser ablation performance in in vivo zebrafish model.
    Shin H; Lee Y; Hwang J; Lim S; Choi J; Gong SP; Kang HW
    J Biophotonics; 2023 Dec; 16(12):e202300232. PubMed ID: 37651611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Additonal observations using a pulsed carbon dioxide laser with a fixed pulse duration.
    Smith KJ; Graham JS; Hamilton TA; Hackley BE; Skelton HG; Hurst CG
    Arch Dermatol; 1997 Jan; 133(1):105-7. PubMed ID: 9006385
    [No Abstract]   [Full Text] [Related]  

  • 47. Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers.
    Puliafito CA; Wong K; Steinert RF
    Lasers Surg Med; 1987; 7(2):155-9. PubMed ID: 3613806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Penetration depth of Ultrapulse carbon dioxide laser in human skin.
    Trelles MA; David LM; Rigau J
    Dermatol Surg; 1996 Oct; 22(10):863-5. PubMed ID: 9246169
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep subsurface cavities in skin utilizing mechanical optical clearing and femtosecond laser ablation.
    Qiu J; Neev J; Wang T; Milner TE
    Lasers Surg Med; 2013 Aug; 45(6):383-90. PubMed ID: 23754315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histologic comparison of the pulsed dye laser and copper vapor laser effects on pig skin.
    Tan OT; Stafford TJ; Murray S; Kurban AK
    Lasers Surg Med; 1990; 10(6):551-8. PubMed ID: 2263154
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser.
    Mehl A; Kremers L; Salzmann K; Hickel R
    Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Threshold and ablation efficiency studies of microsecond ablation of gelatin under water.
    Sathyam US; Shearin A; Chasteney EA; Prahl SA
    Lasers Surg Med; 1996; 19(4):397-406. PubMed ID: 8982998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser.
    Miller J; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2007 Jan; 46(3):413-20. PubMed ID: 17228389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of varying argon ion laser intensity and exposure time on the ablation of atherosclerotic plaque.
    Strikwerda S; Bott-Silverman C; Ratliff NB; Goormastic M; Cothren RM; Costello B; Kittrell C; Feld MS; Kramer JR
    Lasers Surg Med; 1988; 8(1):66-71. PubMed ID: 2965289
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fractional ablative erbium YAG laser: histological characterization of relationships between laser settings and micropore dimensions.
    Taudorf EH; Haak CS; Erlendsson AM; Philipsen PA; Anderson RR; Paasch U; Haedersdal M
    Lasers Surg Med; 2014 Apr; 46(4):281-9. PubMed ID: 24500855
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Infrared laser surgery of the cornea. Studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron.
    Stern D; Puliafito CA; Dobi ET; Reidy WT
    Ophthalmology; 1988 Oct; 95(10):1434-41. PubMed ID: 3226691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Are more passes better? Safety versus efficacy with the pulsed CO2 laser.
    Burkhardt BR; Maw R
    Plast Reconstr Surg; 1997 Nov; 100(6):1531-4. PubMed ID: 9385968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model for thermal ablation of biological tissue using laser radiation.
    Partovi F; Izatt JA; Cothren RM; Kittrell C; Thomas JE; Strikwerda S; Kramer JR; Feld MS
    Lasers Surg Med; 1987; 7(2):141-54. PubMed ID: 3613805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of tissue ablation with a continuous wave holmium laser.
    Domankevitz Y; McMillan K; Nishioka NS
    Lasers Surg Med; 1996; 19(1):97-102. PubMed ID: 8837000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.