These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 31345943)
1. Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging. Duong MT; Rudie JD; Wang J; Xie L; Mohan S; Gee JC; Rauschecker AM AJNR Am J Neuroradiol; 2019 Aug; 40(8):1282-1290. PubMed ID: 31345943 [TBL] [Abstract][Full Text] [Related]
2. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238 [TBL] [Abstract][Full Text] [Related]
3. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [TBL] [Abstract][Full Text] [Related]
4. A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images. Umapathy L; Perez-Carrillo GG; Keerthivasan MB; Rosado-Toro JA; Altbach MI; Winegar B; Weinkauf C; Bilgin A; AJNR Am J Neuroradiol; 2021 Apr; 42(4):639-647. PubMed ID: 33574101 [TBL] [Abstract][Full Text] [Related]
5. Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation. Laukamp KR; Pennig L; Thiele F; Reimer R; Görtz L; Shakirin G; Zopfs D; Timmer M; Perkuhn M; Borggrefe J Clin Neuroradiol; 2021 Jun; 31(2):357-366. PubMed ID: 32060575 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based automated segmentation of resection cavities on postsurgical epilepsy MRI. Arnold TC; Muthukrishnan R; Pattnaik AR; Sinha N; Gibson A; Gonzalez H; Das SR; Litt B; Englot DJ; Morgan VL; Davis KA; Stein JM Neuroimage Clin; 2022; 36():103154. PubMed ID: 35988342 [TBL] [Abstract][Full Text] [Related]
8. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Norman B; Pedoia V; Majumdar S Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598 [TBL] [Abstract][Full Text] [Related]
9. Automated volumetric assessment with artificial neural networks might enable a more accurate assessment of disease burden in patients with multiple sclerosis. Brugnara G; Isensee F; Neuberger U; Bonekamp D; Petersen J; Diem R; Wildemann B; Heiland S; Wick W; Bendszus M; Maier-Hein K; Kickingereder P Eur Radiol; 2020 Apr; 30(4):2356-2364. PubMed ID: 31900702 [TBL] [Abstract][Full Text] [Related]
10. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
11. Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks. Novosad P; Fonov V; Collins DL; Hum Brain Mapp; 2020 Feb; 41(2):309-327. PubMed ID: 31633863 [TBL] [Abstract][Full Text] [Related]
12. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074 [TBL] [Abstract][Full Text] [Related]
13. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of a Deep Learning-Based Automatic Brain Segmentation and Classification Algorithm for Alzheimer Disease Using 3D T1-Weighted Volumetric Images. Suh CH; Shim WH; Kim SJ; Roh JH; Lee JH; Kim MJ; Park S; Jung W; Sung J; Jahng GH; AJNR Am J Neuroradiol; 2020 Dec; 41(12):2227-2234. PubMed ID: 33154073 [TBL] [Abstract][Full Text] [Related]
17. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images. Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560 [TBL] [Abstract][Full Text] [Related]
18. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning. Byra M; Wu M; Zhang X; Jang H; Ma YJ; Chang EY; Shah S; Du J Magn Reson Med; 2020 Mar; 83(3):1109-1122. PubMed ID: 31535731 [TBL] [Abstract][Full Text] [Related]
19. MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation? Egger C; Opfer R; Wang C; Kepp T; Sormani MP; Spies L; Barnett M; Schippling S Neuroimage Clin; 2017; 13():264-270. PubMed ID: 28018853 [TBL] [Abstract][Full Text] [Related]
20. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation. Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]