These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 31346948)

  • 1. Identification of clinically relevant features in hypertensive patients using penalized regression: a case study of cardiovascular events.
    Garcia-Carretero R; Barquero-Perez O; Mora-Jimenez I; Soguero-Ruiz C; Goya-Esteban R; Ramos-Lopez J
    Med Biol Eng Comput; 2019 Sep; 57(9):2011-2026. PubMed ID: 31346948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logistic LASSO and Elastic Net to Characterize Vitamin D Deficiency in a Hypertensive Obese Population.
    Garcia-Carretero R; Vigil-Medina L; Barquero-Perez O; Mora-Jimenez I; Soguero-Ruiz C; Goya-Esteban R; Ramos-Lopez J
    Metab Syndr Relat Disord; 2020 Mar; 18(2):79-85. PubMed ID: 31928513
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events.
    Ojeda FM; Müller C; Börnigen D; Trégouët DA; Schillert A; Heinig M; Zeller T; Schnabel RB
    Genomics Proteomics Bioinformatics; 2016 Aug; 14(4):235-43. PubMed ID: 27224515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.
    Jovanovic M; Radovanovic S; Vukicevic M; Van Poucke S; Delibasic B
    Artif Intell Med; 2016 Sep; 72():12-21. PubMed ID: 27664505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population.
    Chowdhury MZI; Leung AA; Walker RL; Sikdar KC; O'Beirne M; Quan H; Turin TC
    Sci Rep; 2023 Jan; 13(1):13. PubMed ID: 36593280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials.
    Ternès N; Rotolo F; Michiels S
    BMC Med Res Methodol; 2017 May; 17(1):83. PubMed ID: 28532387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning model for cardiovascular disease prediction in patients with chronic kidney disease.
    Zhu H; Qiao S; Zhao D; Wang K; Wang B; Niu Y; Shang S; Dong Z; Zhang W; Zheng Y; Chen X
    Front Endocrinol (Lausanne); 2024; 15():1390729. PubMed ID: 38863928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
    Gui J; Li H
    Bioinformatics; 2005 Jul; 21(13):3001-8. PubMed ID: 15814556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.
    Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M
    PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction Model of Cardiac Risk for Dental Extraction in Elderly Patients with Cardiovascular Diseases.
    Tang M; Hu P; Wang CF; Yu CQ; Sheng J; Ma SJ
    Gerontology; 2019; 65(6):591-598. PubMed ID: 31048587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions.
    Ogutu JO; Schulz-Streeck T; Piepho HP
    BMC Proc; 2012 May; 6 Suppl 2(Suppl 2):S10. PubMed ID: 22640436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study.
    Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M
    PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Penalized Cox Regression Methods in Low-Dimensional Data with Few-Events: An Application to Dialysis Patients' Data.
    Rafati S; Baneshi MR; Hassani L; Bahrampour A
    J Res Health Sci; 2019 Jul; 19(3):e00452. PubMed ID: 31586373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation and internal validation of an expanded cardiovascular risk prediction score for rheumatoid arthritis: a Consortium of Rheumatology Researchers of North America Registry Study.
    Solomon DH; Greenberg J; Curtis JR; Liu M; Farkouh ME; Tsao P; Kremer JM; Etzel CJ
    Arthritis Rheumatol; 2015 May; 67(8):1995-2003. PubMed ID: 25989470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Occurrence of Spine Surgery Complications Using "Big Data" Modeling of an Administrative Claims Database.
    Ratliff JK; Balise R; Veeravagu A; Cole TS; Cheng I; Olshen RA; Tian L
    J Bone Joint Surg Am; 2016 May; 98(10):824-34. PubMed ID: 27194492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction model for cardiovascular events or all-cause mortality in incident dialysis patients.
    Inaguma D; Morii D; Kabata D; Yoshida H; Tanaka A; Koshi-Ito E; Takahashi K; Hayashi H; Koide S; Tsuboi N; Hasegawa M; Shintani A; Yuzawa Y
    PLoS One; 2019; 14(8):e0221352. PubMed ID: 31437231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine learning approach to predict early outcomes after pituitary adenoma surgery.
    Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE
    Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models.
    Wang M; Greenberg M; Forkert ND; Chekouo T; Afriyie G; Ismail Z; Smith EE; Sajobi TT
    BMC Med Res Methodol; 2022 Nov; 22(1):284. PubMed ID: 36324086
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 34.