These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31347353)

  • 1. Engineering Graphene Wrinkles for Large Enhancement of Interlaminar Friction Enabled Damping Capability.
    Lu W; Qin F; Wang Y; Luo Y; Wang H; Scarpa F; Li J; Sesana R; Cura F; Peng HX
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30278-30289. PubMed ID: 31347353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.
    Long F; Yasaei P; Yao W; Salehi-Khojin A; Shahbazian-Yassar R
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20922-20927. PubMed ID: 28513130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene.
    Zeng X; Peng Y; Yu M; Lang H; Cao X; Zou K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8214-8224. PubMed ID: 29443495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced nanoscale friction on fluorinated graphene.
    Kwon S; Ko JH; Jeon KJ; Kim YH; Park JY
    Nano Lett; 2012 Dec; 12(12):6043-8. PubMed ID: 22720882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic Mechanisms Behind the High Friction and Failure Initiation of Graphene Wrinkles.
    Huang Z; Chen S; Lin Q; Ji Z; Gong P; Sun Z; Shen B
    Langmuir; 2021 Jun; 37(22):6776-6782. PubMed ID: 34032438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS
    Tian J; Yin X; Li J; Qi W; Huang P; Chen X; Luo J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4031-4040. PubMed ID: 31889443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Optimizing Core-Shell PZT@Carbon/Polyurethane Composites with Enhanced Passive Piezoelectric Vibration Damping Performance.
    Chen W; Lu X; Zheng Q; Hu D; Chen Y; Yu Q; Fan Q; Li H; Liu H
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7742-7753. PubMed ID: 38308589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.
    Chen H; Filleter T
    Nanotechnology; 2015 Mar; 26(13):135702. PubMed ID: 25751675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale interfacial interactions of graphene with polar and nonpolar liquids.
    Robinson BJ; Kay ND; Kolosov OV
    Langmuir; 2013 Jun; 29(25):7735-42. PubMed ID: 23713755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of polyurethane-based graphene foam/lead zirconate titanate/polydimethylsiloxane composites with good damping performance.
    Zhang C; Chen Y; Li H; Xue W; Tian R; Dugnani R; Liu H
    RSC Adv; 2018 Feb; 8(15):7916-7923. PubMed ID: 35541996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Wrinkled Graphene Oxide Using Solution Method.
    Kim S; Han KI; Lee IG; Yang WS; Hwang WS
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4302-4305. PubMed ID: 29442778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication of polyurethane/epoxy IPNs filled graphene aerogel with improved damping, thermal and mechanical properties.
    Zhang C; Chen Y; Li H; Liu H
    RSC Adv; 2018 Jul; 8(48):27390-27399. PubMed ID: 35540022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction and Wear Properties of Different Types of Graphene Nanosheets as Effective Solid Lubricants.
    Peng Y; Wang Z; Zou K
    Langmuir; 2015 Jul; 31(28):7782-91. PubMed ID: 25992590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.
    Zhang X; Fan X; Yan C; Li H; Zhu Y; Li X; Yu L
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1543-52. PubMed ID: 22391332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments.
    Liu Y; Li J; Chen X; Luo J
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40470-40480. PubMed ID: 31577116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.