BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31347688)

  • 1. Bayesian inference of distributed time delay in transcriptional and translational regulation.
    Choi B; Cheng YY; Cinar S; Ott W; Bennett MR; Josić K; Kim JK
    Bioinformatics; 2020 Jan; 36(2):586-593. PubMed ID: 31347688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Bayesian models of transcriptional and translational regulation processes with delays.
    Cortez MJ; Hong H; Choi B; Kim JK; Josić K
    Bioinformatics; 2021 Dec; 38(1):187-195. PubMed ID: 34450624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring delays in partially observed gene regulation processes.
    Hong H; Cortez MJ; Cheng YY; Kim HJ; Choi B; Josić K; Kim JK
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37935426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact Bayesian inference for phylogenetic birth-death models.
    Parag KV; Pybus OG
    Bioinformatics; 2018 Nov; 34(21):3638-3645. PubMed ID: 29718104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filtering and inference for stochastic oscillators with distributed delays.
    Calderazzo S; Brancaccio M; Finkenstädt B
    Bioinformatics; 2019 Apr; 35(8):1380-1387. PubMed ID: 30202930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference on stochastic gene transcription from flow cytometry data.
    Tiberi S; Walsh M; Cavallaro M; Hebenstreit D; Finkenstädt B
    Bioinformatics; 2018 Sep; 34(17):i647-i655. PubMed ID: 30423089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation.
    Schälte Y; Hasenauer J
    Bioinformatics; 2020 Jul; 36(Suppl_1):i551-i559. PubMed ID: 32657404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating chain length for time delays in dynamical systems using profile likelihood.
    Hauber AL; Engesser R; Vanlier J; Timmer J
    Bioinformatics; 2020 Mar; 36(6):1848-1854. PubMed ID: 32176768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring signaling pathways with probabilistic programming.
    Merrell D; Gitter A
    Bioinformatics; 2020 Dec; 36(Suppl_2):i822-i830. PubMed ID: 33381832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological approximate Bayesian computation for parameter inference of an angiogenesis model.
    Thorne T; Kirk PDW; Harrington HA
    Bioinformatics; 2022 Apr; 38(9):2529-2535. PubMed ID: 35191485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle Gibbs sampling for Bayesian phylogenetic inference.
    Wang S; Wang L
    Bioinformatics; 2021 May; 37(5):642-649. PubMed ID: 33045053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient inference for sparse latent variable models of transcriptional regulation.
    Dai Z; Iqbal M; Lawrence ND; Rattray M
    Bioinformatics; 2017 Dec; 33(23):3776-3783. PubMed ID: 28961802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible jump MCMC for multi-model inference in Metabolic Flux Analysis.
    Theorell A; Nöh K
    Bioinformatics; 2020 Jan; 36(1):232-240. PubMed ID: 31214716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of dynamic mass-action biochemical reaction networks using sparse Bayesian methods.
    Jiang R; Singh P; Wrede F; Hellander A; Petzold L
    PLoS Comput Biol; 2022 Jan; 18(1):e1009830. PubMed ID: 35100263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian information sharing enhances detection of regulatory associations in rare cell types.
    Wu AP; Peng J; Berger B; Cho H
    Bioinformatics; 2021 Jul; 37(Suppl_1):i349-i357. PubMed ID: 34252956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Likelihood-free nested sampling for parameter inference of biochemical reaction networks.
    Mikelson J; Khammash M
    PLoS Comput Biol; 2020 Oct; 16(10):e1008264. PubMed ID: 33035218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practical guide to pseudo-marginal methods for computational inference in systems biology.
    Warne DJ; Baker RE; Simpson MJ
    J Theor Biol; 2020 Jul; 496():110255. PubMed ID: 32223995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causal network inference using biochemical kinetics.
    Oates CJ; Dondelinger F; Bayani N; Korkola J; Gray JW; Mukherjee S
    Bioinformatics; 2014 Sep; 30(17):i468-74. PubMed ID: 25161235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.