These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 31347771)
21. Solar Paint from TiO Shen G; Du Z; Pan Z; Du J; Zhong X ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952 [TBL] [Abstract][Full Text] [Related]
22. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556 [TBL] [Abstract][Full Text] [Related]
23. Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties. Toyoda T; Shen Q J Phys Chem Lett; 2012 Jul; 3(14):1885-93. PubMed ID: 26292009 [TBL] [Abstract][Full Text] [Related]
24. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Kamat PV Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938 [TBL] [Abstract][Full Text] [Related]
25. Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells. Tian J; Cao G J Phys Chem Lett; 2015 May; 6(10):1859-69. PubMed ID: 26263261 [TBL] [Abstract][Full Text] [Related]
26. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
27. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Zhang Y; Wu G; Liu F; Ding C; Zou Z; Shen Q Chem Soc Rev; 2020 Jan; 49(1):49-84. PubMed ID: 31825404 [TBL] [Abstract][Full Text] [Related]
28. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes. Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932 [TBL] [Abstract][Full Text] [Related]
29. Enhanced performance of lead sulfide quantum dot-sensitized solar cells by controlling the thickness of metal halide perovskite shells. Seo G; Kim S; Choi H; Kim MC Heliyon; 2023 Oct; 9(10):e20276. PubMed ID: 37767508 [TBL] [Abstract][Full Text] [Related]
30. On the missing links in quantum dot solar cells: a DFT study on fluorophore oxidation and reduction processes in sensitized solar cells. Muzakir SK; Alias N; Yusoff MM; Jose R Phys Chem Chem Phys; 2013 Oct; 15(38):16275-85. PubMed ID: 24000052 [TBL] [Abstract][Full Text] [Related]
31. Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells. Lv M; Zhu J; Huang Y; Li Y; Shao Z; Xu Y; Dai S ACS Appl Mater Interfaces; 2015 Aug; 7(31):17482-8. PubMed ID: 26186007 [TBL] [Abstract][Full Text] [Related]
32. Construction Au/FAPbI Que M; Wu Q; Li Y; Yuan H; Zhong P; He S; Xu Y; Li B; Ma X; Que W ACS Appl Mater Interfaces; 2024 Jul; 16(27):34962-34972. PubMed ID: 38934361 [TBL] [Abstract][Full Text] [Related]
33. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells. Shen C; Fichou D; Wang Q Chem Asian J; 2016 Apr; 11(8):1183-93. PubMed ID: 26879244 [TBL] [Abstract][Full Text] [Related]
34. Quantum Dot Interface-Mediated CsPbIBr Qi X; Wang J; Tan F; Dong C; Liu K; Li X; Zhang L; Wu H; Wang HL; Qu S; Wang Z; Wang Z ACS Appl Mater Interfaces; 2021 Nov; 13(46):55349-55357. PubMed ID: 34762401 [TBL] [Abstract][Full Text] [Related]
35. Comparative advantages of Zn-Cu-In-S alloy QDs in the construction of quantum dot-sensitized solar cells. Yue L; Rao H; Du J; Pan Z; Yu J; Zhong X RSC Adv; 2018 Jan; 8(7):3637-3645. PubMed ID: 35542942 [TBL] [Abstract][Full Text] [Related]
36. Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots. Seo G; Seo J; Ryu S; Yin W; Ahn TK; Seok SI J Phys Chem Lett; 2014 Jun; 5(11):2015-20. PubMed ID: 26273888 [TBL] [Abstract][Full Text] [Related]
37. Application of quantum dots in perovskite solar cells. Zheng F; Liu Y; Ren W; Sunli Z; Xie X; Cui Y; Hao Y Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 33647887 [TBL] [Abstract][Full Text] [Related]
38. Engineering the synthesized colloidal CuInS Liang Z; Chen Y; Zhang R; Zhang K; Ba K; Lin Y; Wang D; Xie T Dalton Trans; 2022 Nov; 51(45):17292-17300. PubMed ID: 36317601 [TBL] [Abstract][Full Text] [Related]
39. In Situ Bonding Regulation of Surface Ligands for Efficient and Stable FAPbI Ding S; Hao M; Fu C; Lin T; Baktash A; Chen P; He D; Zhang C; Chen W; Whittaker AK; Bai Y; Wang L Adv Sci (Weinh); 2022 Dec; 9(35):e2204476. PubMed ID: 36316248 [TBL] [Abstract][Full Text] [Related]
40. Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS layers. Wu Q; Hou J; Zhao H; Liu Z; Yue X; Peng S; Cao H Dalton Trans; 2018 Feb; 47(7):2214-2221. PubMed ID: 29362750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]