These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31347877)
41. Deep-neural-network solution of the electronic Schrödinger equation. Hermann J; Schätzle Z; Noé F Nat Chem; 2020 Oct; 12(10):891-897. PubMed ID: 32968231 [TBL] [Abstract][Full Text] [Related]
42. Excited-State Diffusion Monte Carlo Calculations: A Simple and Efficient Two-Determinant Ansatz. Blunt NS; Neuscamman E J Chem Theory Comput; 2019 Jan; 15(1):178-189. PubMed ID: 30525592 [TBL] [Abstract][Full Text] [Related]
43. Supersymmetric quantum mechanics, excited state energies and wave functions, and the Rayleigh-Ritz variational principle: a proof of principle study. Kouri DJ; Markovich T; Maxwell N; Bittner ER J Phys Chem A; 2009 Dec; 113(52):15257-64. PubMed ID: 19863127 [TBL] [Abstract][Full Text] [Related]
45. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz. Dupuy N; Bouaouli S; Mauri F; Sorella S; Casula M J Chem Phys; 2015 Jun; 142(21):214109. PubMed ID: 26049481 [TBL] [Abstract][Full Text] [Related]
46. Molecular Electrical Properties from Quantum Monte Carlo Calculations: Application to Ethyne. Coccia E; Chernomor O; Barborini M; Sorella S; Guidoni L J Chem Theory Comput; 2012 Jun; 8(6):1952-62. PubMed ID: 26593830 [TBL] [Abstract][Full Text] [Related]
47. Solving the Liouvillian Gap with Artificial Neural Networks. Yuan D; Wang HR; Wang Z; Deng DL Phys Rev Lett; 2021 Apr; 126(16):160401. PubMed ID: 33961454 [TBL] [Abstract][Full Text] [Related]
48. All-Electron Quantum Monte Carlo with Jastrow Single Determinant Ansatz: Application to the Sodium Dimer. Nakano K; Maezono R; Sorella S J Chem Theory Comput; 2019 Jul; 15(7):4044-4055. PubMed ID: 31117480 [TBL] [Abstract][Full Text] [Related]
49. Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States. Gnech A; Fore B; Tropiano AJ; Lovato A Phys Rev Lett; 2024 Oct; 133(14):142501. PubMed ID: 39423417 [TBL] [Abstract][Full Text] [Related]
50. Purifying Deep Boltzmann Machines for Thermal Quantum States. Nomura Y; Yoshioka N; Nori F Phys Rev Lett; 2021 Aug; 127(6):060601. PubMed ID: 34420335 [TBL] [Abstract][Full Text] [Related]
51. Feed-forward neural network based variational wave function for the fermionic Hubbard model in one dimension. Sarder MTH; Medhi A J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35772394 [TBL] [Abstract][Full Text] [Related]
52. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms. Casey FP; Waterfall JJ; Gutenkunst RN; Myers CR; Sethna JP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046704. PubMed ID: 18999558 [TBL] [Abstract][Full Text] [Related]
53. T3NS: Three-Legged Tree Tensor Network States. Gunst K; Verstraete F; Wouters S; Legeza Ö; Van Neck D J Chem Theory Comput; 2018 Apr; 14(4):2026-2033. PubMed ID: 29481743 [TBL] [Abstract][Full Text] [Related]
54. Variational ansatz for the superfluid Mott-insulator transition in optical lattices. García-Ripoll JJ; Cirac J; Zoller P; Kollath C; Schollwöck U; von Delft J Opt Express; 2004 Jan; 12(1):42-54. PubMed ID: 19471510 [TBL] [Abstract][Full Text] [Related]
55. Computational methods in coupled electron-ion Monte Carlo simulations. Pierleoni C; Ceperley DM Chemphyschem; 2005 Sep; 6(9):1872-8. PubMed ID: 16088971 [TBL] [Abstract][Full Text] [Related]
56. Variational mixed quantum/semiclassical simulation of dihalogen guest and rare-gas solid host dynamics. Cheng X; Cina JA J Chem Phys; 2014 Jul; 141(3):034113. PubMed ID: 25053307 [TBL] [Abstract][Full Text] [Related]
57. Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry. Nomura Y J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530063 [TBL] [Abstract][Full Text] [Related]
58. Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution. Gangat AA; I T; Kao YJ Phys Rev Lett; 2017 Jul; 119(1):010501. PubMed ID: 28731760 [TBL] [Abstract][Full Text] [Related]
59. Dynamical Large Deviations of Two-Dimensional Kinetically Constrained Models Using a Neural-Network State Ansatz. Casert C; Vieijra T; Whitelam S; Tamblyn I Phys Rev Lett; 2021 Sep; 127(12):120602. PubMed ID: 34597112 [TBL] [Abstract][Full Text] [Related]
60. Quenching dissipative quantum Ising chain: an exact result for nonequilibrium dynamics. Li X; Xu Y; Zhao S J Phys Condens Matter; 2019 Jun; 31(23):235402. PubMed ID: 30849768 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]