These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31347880)

  • 1. Dynamical Quantum Phase Transitions in U(1) Quantum Link Models.
    Huang YP; Banerjee D; Heyl M
    Phys Rev Lett; 2019 Jun; 122(25):250401. PubMed ID: 31347880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.
    Kasamatsu K; Ichinose I; Matsui T
    Phys Rev Lett; 2013 Sep; 111(11):115303. PubMed ID: 24074102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ
    Barbiero L; Schweizer C; Aidelsburger M; Demler E; Goldman N; Grusdt F
    Sci Adv; 2019 Oct; 5(10):eaav7444. PubMed ID: 31646173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.
    Banerjee D; Dalmonte M; Müller M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2012 Oct; 109(17):175302. PubMed ID: 23215198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
    Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R
    Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Scars from Zero Modes in an Abelian Lattice Gauge Theory on Ladders.
    Banerjee D; Sen A
    Phys Rev Lett; 2021 Jun; 126(22):220601. PubMed ID: 34152190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories.
    Luo D; Carleo G; Clark BK; Stokes J
    Phys Rev Lett; 2021 Dec; 127(27):276402. PubMed ID: 35061436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time dynamics of string breaking in quantum spin chains.
    Verdel R; Liu F; Whitsitt S; Gorshkov AV; Heyl M
    Phys Rev B; 2020; 102(1):. PubMed ID: 34131609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory.
    Karpov P; Verdel R; Huang YP; Schmitt M; Heyl M
    Phys Rev Lett; 2021 Apr; 126(13):130401. PubMed ID: 33861103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.
    Banerjee D; Bögli M; Dalmonte M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2013 Mar; 110(12):125303. PubMed ID: 25166816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional lattice gauge theories with superconducting quantum circuits.
    Marcos D; Widmer P; Rico E; Hafezi M; Rabl P; Wiese UJ; Zoller P
    Ann Phys (N Y); 2014 Dec; 351():634-654. PubMed ID: 25512676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Equilibrium and Dynamical Quantum Phase Transitions in Ising Chains via Out-of-Time-Ordered Correlators.
    Heyl M; Pollmann F; Dóra B
    Phys Rev Lett; 2018 Jul; 121(1):016801. PubMed ID: 30028149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Many-Body Localization Dynamics from Gauge Invariance.
    Brenes M; Dalmonte M; Heyl M; Scardicchio A
    Phys Rev Lett; 2018 Jan; 120(3):030601. PubMed ID: 29400521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical quantum phase transitions in systems with broken-symmetry phases.
    Heyl M
    Phys Rev Lett; 2014 Nov; 113(20):205701. PubMed ID: 25432049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator.
    Yang B; Sun H; Ott R; Wang HY; Zache TV; Halimeh JC; Yuan ZS; Hauke P; Pan JW
    Nature; 2020 Nov; 587(7834):392-396. PubMed ID: 33208959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator.
    Keesling A; Omran A; Levine H; Bernien H; Pichler H; Choi S; Samajdar R; Schwartz S; Silvi P; Sachdev S; Zoller P; Endres M; Greiner M; Vuletić V; Lukin MD
    Nature; 2019 Apr; 568(7751):207-211. PubMed ID: 30936552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconfining Disordered Phase in Two-Dimensional Quantum Link Models.
    Cardarelli L; Greschner S; Santos L
    Phys Rev Lett; 2020 Mar; 124(12):123601. PubMed ID: 32281853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confinement and Mott Transitions of Dynamical Charges in One-Dimensional Lattice Gauge Theories.
    Kebrič M; Barbiero L; Reinmoser C; Schollwöck U; Grusdt F
    Phys Rev Lett; 2021 Oct; 127(16):167203. PubMed ID: 34723595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex Density Wave Orders and Quantum Phase Transitions in a Model of Square-Lattice Rydberg Atom Arrays.
    Samajdar R; Ho WW; Pichler H; Lukin MD; Sachdev S
    Phys Rev Lett; 2020 Mar; 124(10):103601. PubMed ID: 32216437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.