These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31347899)

  • 1. Cavity Dark Mode of Distant Coupled Atom-Cavity Systems.
    White DH; Kato S; Német N; Parkins S; Aoki T
    Phys Rev Lett; 2019 Jun; 122(25):253603. PubMed ID: 31347899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics.
    Kato S; Német N; Senga K; Mizukami S; Huang X; Parkins S; Aoki T
    Nat Commun; 2019 Mar; 10(1):1160. PubMed ID: 30858381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressing normal mode excitation by quantum interference in a cavity-atom system.
    Zhang J; Hernandez G; Zhu Y
    Opt Express; 2008 May; 16(11):7860-8. PubMed ID: 18545496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons.
    Yun M; Guo FQ; Li M; Yan LL; Feng M; Li YX; Su SL
    Opt Express; 2021 Mar; 29(6):8737-8750. PubMed ID: 33820315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong coupling of plasmonic bright and dark modes with two eigenmodes of a photonic crystal cavity.
    Meng F; Cao L; Karalis A; Gu H; Thomson MD; Roskos HG
    Opt Express; 2023 Nov; 31(24):39624-39637. PubMed ID: 38041279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent Coupling of Remote Spin Ensembles via a Cavity Bus.
    Astner T; Nevlacsil S; Peterschofsky N; Angerer A; Rotter S; Putz S; Schmiedmayer J; Majer J
    Phys Rev Lett; 2017 Apr; 118(14):140502. PubMed ID: 28430485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity quantum electrodynamics with Anderson-localized modes.
    Sapienza L; Thyrrestrup H; Stobbe S; Garcia PD; Smolka S; Lodahl P
    Science; 2010 Mar; 327(5971):1352-5. PubMed ID: 20223981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distant entanglement via photon hopping in a coupled cavity magnomechanical system.
    Sohail A; Peng JX; Hidki A; Khalid M; Singh SK
    Sci Rep; 2023 Dec; 13(1):21840. PubMed ID: 38071389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H1 photonic crystal cavities for hybrid quantum information protocols.
    Hagemeier J; Bonato C; Truong TA; Kim H; Beirne GJ; Bakker M; van Exter MP; Luo Y; Petroff P; Bouwmeester D
    Opt Express; 2012 Oct; 20(22):24714-26. PubMed ID: 23187235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of four-mode weighted cluster states with atomic ensembles in high-Q ring cavities.
    Sun LH; Chen YQ; Li GX
    Opt Express; 2012 Jan; 20(3):3176-91. PubMed ID: 22330555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong Coupling of Two Individually Controlled Atoms via a Nanophotonic Cavity.
    Samutpraphoot P; Đorđević T; Ocola PL; Bernien H; Senko C; Vuletić V; Lukin MD
    Phys Rev Lett; 2020 Feb; 124(6):063602. PubMed ID: 32109118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems.
    Tian F; Sumikura H; Kuramochi E; Taniyama H; Takiguchi M; Notomi M
    Opt Express; 2016 Nov; 24(24):28039-28055. PubMed ID: 27906370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous generation of single photons with controlled waveform in an ion-trap cavity system.
    Keller M; Lange B; Hayasaka K; Lange W; Walther H
    Nature; 2004 Oct; 431(7012):1075-8. PubMed ID: 15510142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.