These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31348008)

  • 1. Mediational E-values: Approximate Sensitivity Analysis for Unmeasured Mediator-Outcome Confounding.
    Smith LH; VanderWeele TJ
    Epidemiology; 2019 Nov; 30(6):835-837. PubMed ID: 31348008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Natural Indirect Effects Robust to Unmeasured Confounding and Mediator Measurement Error.
    Fulcher IR; Shi X; Tchetgen Tchetgen EJ
    Epidemiology; 2019 Nov; 30(6):825-834. PubMed ID: 31478915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis.
    McCandless LC; Somers JM
    Stat Methods Med Res; 2019 Feb; 28(2):515-531. PubMed ID: 28882092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity Analysis Without Assumptions.
    Ding P; VanderWeele TJ
    Epidemiology; 2016 May; 27(3):368-77. PubMed ID: 26841057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias Formulas for Estimating Direct and Indirect Effects When Unmeasured Confounding Is Present.
    le Cessie S
    Epidemiology; 2016 Jan; 27(1):125-32. PubMed ID: 26426943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation.
    Groenwold RHH; Shofty I; Miočević M; van Smeden M; Klugkist I
    BMC Med Res Methodol; 2018 Dec; 18(1):174. PubMed ID: 30577773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of natural direct effects when a confounder of the mediator is directly affected by exposure.
    Tchetgen Tchetgen EJ; Vanderweele TJ
    Epidemiology; 2014 Mar; 25(2):282-91. PubMed ID: 24487211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation-based sensitivity analysis for causal mediation studies.
    Qin X; Yang F
    Psychol Methods; 2022 Dec; 27(6):1000-1013. PubMed ID: 34914470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect decomposition in the presence of an exposure-induced mediator-outcome confounder.
    Vanderweele TJ; Vansteelandt S; Robins JM
    Epidemiology; 2014 Mar; 25(2):300-6. PubMed ID: 24487213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and robust estimation of swapped direct and indirect effects: Mediation analysis with unmeasured mediator-outcome confounding and intermediate confounding.
    Tai AS; Lin SH
    Stat Med; 2022 Sep; 41(21):4143-4158. PubMed ID: 35716042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing mediation using marginal structural models in the presence of confounding and moderation.
    Coffman DL; Zhong W
    Psychol Methods; 2012 Dec; 17(4):642-64. PubMed ID: 22905648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing moderated mediation in linear models requires fewer confounding assumptions than assessing mediation.
    Loeys T; Talloen W; Goubert L; Moerkerke B; Vansteelandt S
    Br J Math Stat Psychol; 2016 Nov; 69(3):352-374. PubMed ID: 27711981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies.
    Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M
    BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bias formulas for sensitivity analysis for direct and indirect effects.
    VanderWeele TJ
    Epidemiology; 2010 Jul; 21(4):540-51. PubMed ID: 20479643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic results on the bias due to nondifferential misclassification of a binary mediator.
    Ogburn EL; VanderWeele TJ
    Am J Epidemiol; 2012 Sep; 176(6):555-61. PubMed ID: 22930481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity analysis for the effects of multiple unmeasured confounders.
    Groenwold RH; Sterne JA; Lawlor DA; Moons KG; Hoes AW; Tilling K
    Ann Epidemiol; 2016 Sep; 26(9):605-11. PubMed ID: 27576907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity plots for confounder bias in the single mediator model.
    Cox MG; Kisbu-Sakarya Y; Miočević M; MacKinnon DP
    Eval Rev; 2013 Oct; 37(5):405-31. PubMed ID: 24681690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement error, time lag, unmeasured confounding: Considerations for longitudinal estimation of the effect of a mediator in randomised clinical trials.
    Goldsmith KA; Chalder T; White PD; Sharpe M; Pickles A
    Stat Methods Med Res; 2018 Jun; 27(6):1615-1633. PubMed ID: 27647810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis.
    MacKinnon DP; Pirlott AG
    Pers Soc Psychol Rev; 2015 Feb; 19(1):30-43. PubMed ID: 25063043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the impact of non-shared unmeasured confounding on the sibling comparison analysis.
    Esen BÖ; Ehrenstein V; Petersen I; Sørensen HT; Pedersen L
    Int J Epidemiol; 2024 Feb; 53(1):. PubMed ID: 38110565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.