These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dose- and time-dependent effects of recombinant human bone morphogenetic protein-2 on the osteogenic and adipogenic potentials of alveolar bone-derived stromal cells. Park JC; Kim JC; Kim BK; Cho KS; Im GI; Kim BS; Kim CS J Periodontal Res; 2012 Oct; 47(5):645-54. PubMed ID: 22471302 [TBL] [Abstract][Full Text] [Related]
5. Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model. DeMitchell-Rodriguez EM; Shen C; Nayak VV; Tovar N; Witek L; Torroni A; Yarholar LM; Cronstein BN; Flores RL; Coelho PG Plast Reconstr Surg; 2023 Aug; 152(2):270e-280e. PubMed ID: 36723712 [TBL] [Abstract][Full Text] [Related]
6. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855 [TBL] [Abstract][Full Text] [Related]
7. Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffolds. Witek L; Alifarag AM; Tovar N; Lopez CD; Cronstein BN; Rodriguez ED; Coelho PG J Orthop Res; 2019 Dec; 37(12):2499-2507. PubMed ID: 31334868 [TBL] [Abstract][Full Text] [Related]
8. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Wang MM; Flores RL; Witek L; Torroni A; Ibrahim A; Wang Z; Liss HA; Cronstein BN; Lopez CD; Maliha SG; Coelho PG Sci Rep; 2019 Dec; 9(1):18439. PubMed ID: 31804544 [TBL] [Abstract][Full Text] [Related]
9. Accelerated Bone Formation in Distracted Alveolar Bone After Injection of Recombinant Human Bone Morphogenetic Protein-2. Terbish M; Yoo SH; Kim HJ; Yu HS; Hwang CJ; Baik HS; Cha JY J Periodontol; 2015 Sep; 86(9):1078-86. PubMed ID: 25957054 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect. Shim JH; Kim SE; Park JY; Kundu J; Kim SW; Kang SS; Cho DW Tissue Eng Part A; 2014 Jul; 20(13-14):1980-92. PubMed ID: 24517081 [TBL] [Abstract][Full Text] [Related]
11. Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler? Lyons FG; Gleeson JP; Partap S; Coghlan K; O'Brien FJ Clin Orthop Relat Res; 2014 Apr; 472(4):1318-28. PubMed ID: 24385037 [TBL] [Abstract][Full Text] [Related]
12. Effects of rhBMP-2/7 Heterodimer and RADA16 Hydrogel Scaffold on Bone Formation During Rabbit Mandibular Distraction. Ren LF; Shi GS; Tong YQ; Jiang SY; Zhang F J Oral Maxillofac Surg; 2018 May; 76(5):1092.e1-1092.e10. PubMed ID: 29425753 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensionally printed polycaprolactone/beta-tricalcium phosphate scaffold was more effective as an rhBMP-2 carrier for new bone formation than polycaprolactone alone. Park SA; Lee HJ; Kim SY; Kim KS; Jo DW; Park SY J Biomed Mater Res A; 2021 Jun; 109(6):840-848. PubMed ID: 32776655 [TBL] [Abstract][Full Text] [Related]
14. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Niu H; Ma Y; Wu G; Duan B; Wang Y; Yuan Y; Liu C Biomaterials; 2019 Sep; 216():119216. PubMed ID: 31138454 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related]
16. Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite. Zeng J; Xiong S; Ding L; Zhou J; Li J; Qiu P; Liao X; Xiong L; Long Z; Liu S Life Sci; 2019 Oct; 234():116743. PubMed ID: 31408660 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of rhBMP-2 Loaded PCL/ Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530 [TBL] [Abstract][Full Text] [Related]
18. Vertical Bone Augmentation Using Deproteinized Bovine Bone Mineral, Absorbable Collagen Sponge, and Recombinant Human Bone Morphogenetic Protein-2: An In Vivo Study in Rabbits. Kim YJ; de Molon RS; Horiguti FR; Contador GP; Coelho MA; Mascarenhas VI; de Souza Faloni AP; Cirelli JA; Sendyk WR Int J Oral Maxillofac Implants; 2018; 33(3):512–522. PubMed ID: 29543927 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold. Wang H; Wu G; Zhang J; Zhou K; Yin B; Su X; Qiu G; Yang G; Zhang X; Zhou G; Wu Z Colloids Surf B Biointerfaces; 2016 May; 141():491-498. PubMed ID: 26896655 [TBL] [Abstract][Full Text] [Related]
20. Scaffold-based rhBMP-2 therapy in a rat alveolar defect model: implications for human gingivoperiosteoplasty. Nguyen PD; Lin CD; Allori AC; Schachar JS; Ricci JL; Saadeh PB; Warren SM Plast Reconstr Surg; 2009 Dec; 124(6):1829-1839. PubMed ID: 19952639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]