These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31348481)

  • 41. Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy.
    Zhang P; Wang F; Liu W; Mao X; Hao C; Zhang Y; Fan C; Hu J; Wang L; Li B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21973-21981. PubMed ID: 31117423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA.
    Zhou F; Sun W; Ricardo KB; Wang D; Shen J; Yin P; Liu H
    ACS Nano; 2016 Mar; 10(3):3069-77. PubMed ID: 26845641
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface.
    Suzuki Y; Endo M; Yang Y; Sugiyama H
    J Am Chem Soc; 2014 Feb; 136(5):1714-7. PubMed ID: 24428846
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protocols for self-assembly and imaging of DNA nanostructures.
    Sobey TL; Simmel FC
    Methods Mol Biol; 2011; 749():13-32. PubMed ID: 21674362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoconstructions based on double-stranded nucleic acids.
    Yevdokimov YM; Skuridin SG; Nechipurenko YD; Zakharov MA; Salyanov VI; Kurnosov AA; Kuznetsov VD; Nikiforov VN
    Int J Biol Macromol; 2005 Jul; 36(1-2):103-15. PubMed ID: 15979700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct visualization of transient thermal response of a DNA origami.
    Song J; Arbona JM; Zhang Z; Liu L; Xie E; Elezgaray J; Aime JP; Gothelf KV; Besenbacher F; Dong M
    J Am Chem Soc; 2012 Jun; 134(24):9844-7. PubMed ID: 22646845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In-Phase Assembly of Slim DNA Lattices with Small Circular DNA Motifs via Short Connections of 11 and 16 Base Pairs.
    Wang M; Guo X; Jiang C; Wang X; Xiao SJ
    Chembiochem; 2016 Jun; 17(12):1132-7. PubMed ID: 27187004
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.
    He Y; Ye T; Su M; Zhang C; Ribbe AE; Jiang W; Mao C
    Nature; 2008 Mar; 452(7184):198-201. PubMed ID: 18337818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA binding adaptors to assemble proteins of interest on DNA scaffold.
    Nakata E; Dinh H; Nguyen TM; Morii T
    Methods Enzymol; 2019; 617():287-322. PubMed ID: 30784406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices.
    Yatsunyk LA; Mendoza O; Mergny JL
    Acc Chem Res; 2014 Jun; 47(6):1836-44. PubMed ID: 24871086
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silver nanoassemblies constructed from boranephosphonate DNA.
    Roy S; Olesiak M; Shang S; Caruthers MH
    J Am Chem Soc; 2013 Apr; 135(16):6234-41. PubMed ID: 23557435
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label-free, atomic force microscopy-based mapping of DNA intrinsic curvature for the nanoscale comparative analysis of bent duplexes.
    Buzio R; Repetto L; Giacopelli F; Ravazzolo R; Valbusa U
    Nucleic Acids Res; 2012 Jun; 40(11):e84. PubMed ID: 22402493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modular self-assembly of DNA lattices with tunable periodicity.
    Liu Y; Yan H
    Small; 2005 Mar; 1(3):327-30. PubMed ID: 17193452
    [No Abstract]   [Full Text] [Related]  

  • 55. Direct Observation of the Double-Stranded DNA Formation through Metal Ion-Mediated Base Pairing in the Nanoscale Structure.
    Xing X; Feng Y; Yu Z; Hidaka K; Liu F; Ono A; Sugiyama H; Endo M
    Chemistry; 2019 Jan; 25(6):1446-1450. PubMed ID: 30479034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-Time Observation of Superstructure-Dependent DNA Origami Digestion by DNase I Using High-Speed Atomic Force Microscopy.
    Ramakrishnan S; Shen B; Kostiainen MA; Grundmeier G; Keller A; Linko V
    Chembiochem; 2019 Nov; 20(22):2818-2823. PubMed ID: 31163091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Helical DNA origami tubular structures with various sizes and arrangements.
    Endo M; Yamamoto S; Emura T; Hidaka K; Morone N; Heuser JE; Sugiyama H
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7484-90. PubMed ID: 24888699
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assembly of DNA nanostructures with branched tris-DNA.
    Kuroda T; Sakurai Y; Suzuki Y; Nakamura AO; Kuwahara M; Ozaki H; Sawai H
    Chem Asian J; 2006 Oct; 1(4):575-80. PubMed ID: 17441095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale.
    Wang D; Zhang Y; Wang M; Dong Y; Zhou C; Isbell MA; Yang Z; Liu H; Liu D
    Nanoscale; 2016 Feb; 8(7):3944-8. PubMed ID: 26839050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The tube or the helix? This is the question: towards the fully controlled DNA-directed assembly of carbon nanotubes.
    Zuccheri G; Brucale M; Samorì B
    Small; 2005 Jun; 1(6):590-2. PubMed ID: 17193491
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.