These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3134857)

  • 1. Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa.
    Gabbay-Azaria R; Tel-Or E; Schönfeld M
    Arch Biochem Biophys; 1988 Jul; 264(1):333-9. PubMed ID: 3134857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of glycinebetaine by betaine-homocysteine methyltransferase in Aphanothece halophytica: effect of salt downshock and starvation.
    Incharoensakdi A; Waditee R
    Curr Microbiol; 2000 Oct; 41(4):227-31. PubMed ID: 10977887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Spirulina subsalsa for removal of triphenyltin from water.
    Huang GL; Zhihui S
    Artif Cells Blood Substit Immobil Biotechnol; 2002 Jul; 30(4):293-305. PubMed ID: 12227648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India.
    Shrivastav A; Mishra SK; Mishra S
    Int J Biol Macromol; 2010 Mar; 46(2):255-60. PubMed ID: 20060853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycinebetaine enhances and stabilizes the evolution of oxygen and the synthesis of ATP by cyanobacterial thylakoid membranes.
    Mamedov MD; Hayashi H; Wada H; Mohanty PS; Papageorgiou GC; Murata N
    FEBS Lett; 1991 Dec; 294(3):271-4. PubMed ID: 1756870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity.
    Laloknam S; Tanaka K; Buaboocha T; Waditee R; Incharoensakdi A; Hibino T; Tanaka Y; Takabe T
    Appl Environ Microbiol; 2006 Sep; 72(9):6018-26. PubMed ID: 16957224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis.
    Lu WD; Chi ZM; Su CD
    Arch Microbiol; 2006 Dec; 186(6):495-506. PubMed ID: 17019606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942.
    Scanlan DJ; Sundaram S; Newman J; Mann NH; Carr NG
    J Bacteriol; 1995 May; 177(9):2550-3. PubMed ID: 7730289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-13 NMR studies of salt shock-induced carbohydrate turnover in the marine cyanobacterium Agmenellum quadruplicatum.
    Tel-Or E; Spath S; Packer L; Mehlhorn RJ
    Plant Physiol; 1986; 82(3):646-52. PubMed ID: 11539092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria.
    Goh F; Barrow KD; Burns BP; Neilan BA
    Arch Microbiol; 2010 Dec; 192(12):1031-8. PubMed ID: 20936259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent uptake of glutamate by novel ApGltS enhanced growth under salt stress of halotolerant cyanobacterium Aphanothece halophytica.
    Boonburapong B; Laloknam S; Yamada N; Incharoensakdi A; Takabe T
    Biosci Biotechnol Biochem; 2012; 76(9):1702-7. PubMed ID: 22972333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-6-phosphate dehydrogenase from the cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics of redox modulation.
    Gleason FK
    Arch Biochem Biophys; 1996 Oct; 334(2):277-83. PubMed ID: 8900402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133.
    Summers ML; Wallis JG; Campbell EL; Meeks JC
    J Bacteriol; 1995 Nov; 177(21):6184-94. PubMed ID: 7592384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducers of glycinebetaine synthesis in barley.
    Jagendorf AT; Takabe T
    Plant Physiol; 2001 Dec; 127(4):1827-35. PubMed ID: 11743126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate metabolism in the cyanobacterium Anabaena doliolum under salt stress.
    Rai AK; Sharma NK
    Curr Microbiol; 2006 Jan; 52(1):6-12. PubMed ID: 16392006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR studies on Na+ transport in Synechococcus PCC 6311.
    Nitschmann WH; Packer L
    Arch Biochem Biophys; 1992 May; 294(2):347-52. PubMed ID: 1314538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water.
    Waditee R; Hibino T; Nakamura T; Incharoensakdi A; Takabe T
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):4109-14. PubMed ID: 11891307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+/H+ exchange in the cyanobacterium Synechococcus 6311.
    Blumwald E; Wolosin JM; Packer L
    Biochem Biophys Res Commun; 1984 Jul; 122(1):452-9. PubMed ID: 6430295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.
    Bualuang A; Incharoensakdi A
    World J Microbiol Biotechnol; 2015 Feb; 31(2):379-84. PubMed ID: 25536900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells.
    Banu MN; Hoque MA; Watanabe-Sugimoto M; Islam MM; Uraji M; Matsuoka K; Nakamura Y; Murata Y
    Biosci Biotechnol Biochem; 2010; 74(10):2043-9. PubMed ID: 20944419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.