These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex. Limanowski J; Blankenburg F J Neurosci; 2016 Mar; 36(9):2582-9. PubMed ID: 26937000 [TBL] [Abstract][Full Text] [Related]
3. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task. Marini F; Zenzeri J; Pippo V; Morasso P; Campus C IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1019-1024. PubMed ID: 31374763 [TBL] [Abstract][Full Text] [Related]
4. μ-band desynchronization in the contralateral central and central-parietal areas predicts proprioceptive acuity. Albanese GA; Marini F; Morasso P; Campus C; Zenzeri J Front Hum Neurosci; 2023; 17():1000832. PubMed ID: 37007684 [TBL] [Abstract][Full Text] [Related]
5. 3D Cortical electrophysiology of ballistic upper limb movement in humans. Ofori E; Coombes SA; Vaillancourt DE Neuroimage; 2015 Jul; 115():30-41. PubMed ID: 25929620 [TBL] [Abstract][Full Text] [Related]
6. Effect of Neck Botulinum Neurotoxin Injection on Proprioception and Somatosensory-Motor Cortical Processing in Cervical Dystonia. Khosravani S; Buchanan J; Johnson MD; Konczak J Neurorehabil Neural Repair; 2020 Apr; 34(4):309-320. PubMed ID: 32102606 [No Abstract] [Full Text] [Related]
7. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance. Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321 [TBL] [Abstract][Full Text] [Related]
8. A composite robotic-based measure of upper limb proprioception. Kenzie JM; Semrau JA; Hill MD; Scott SH; Dukelow SP J Neuroeng Rehabil; 2017 Nov; 14(1):114. PubMed ID: 29132388 [TBL] [Abstract][Full Text] [Related]
9. Upper limb asymmetries in the matching of proprioceptive versus visual targets. Goble DJ; Brown SH J Neurophysiol; 2008 Jun; 99(6):3063-74. PubMed ID: 18436632 [TBL] [Abstract][Full Text] [Related]
11. Illusory limb movements activate different brain networks than imposed limb movements: an ALE meta-analysis. Kenzie JM; Ben-Shabat E; Lamp G; Dukelow SP; Carey LM Brain Imaging Behav; 2018 Aug; 12(4):919-930. PubMed ID: 28801769 [TBL] [Abstract][Full Text] [Related]
12. The neural foundations of handedness: insights from a rare case of deafferentation. Jayasinghe SAL; Sarlegna FR; Scheidt RA; Sainburg RL J Neurophysiol; 2020 Jul; 124(1):259-267. PubMed ID: 32579409 [TBL] [Abstract][Full Text] [Related]
13. The cerebellum contributes to proprioception during motion. Weeks HM; Therrien AS; Bastian AJ J Neurophysiol; 2017 Aug; 118(2):693-702. PubMed ID: 28404825 [TBL] [Abstract][Full Text] [Related]
14. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator. Contu S; Hussain A; Kager S; Budhota A; Deshmukh VA; Kuah CWK; Yam LHL; Xiang L; Chua KSG; Masia L; Campolo D PLoS One; 2017; 12(11):e0183257. PubMed ID: 29161264 [TBL] [Abstract][Full Text] [Related]
15. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study. Nocchi F; Gazzellini S; Grisolia C; Petrarca M; Cannatà V; Cappa P; D'Alessio T; Castelli E J Neuroeng Rehabil; 2012 Jul; 9():49. PubMed ID: 22828181 [TBL] [Abstract][Full Text] [Related]
16. Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke. Vlaar MP; Solis-Escalante T; Dewald JPA; van Wegen EEH; Schouten AC; Kwakkel G; van der Helm FCT; J Neuroeng Rehabil; 2017 Apr; 14(1):30. PubMed ID: 28412953 [TBL] [Abstract][Full Text] [Related]
17. Upper limb asymmetries in the utilization of proprioceptive feedback. Goble DJ; Lewis CA; Brown SH Exp Brain Res; 2006 Jan; 168(1-2):307-11. PubMed ID: 16311728 [TBL] [Abstract][Full Text] [Related]
18. Using proprioception to control ongoing actions: dominance of vision or altered proprioceptive weighing? Goodman R; Tremblay L Exp Brain Res; 2018 Jul; 236(7):1897-1910. PubMed ID: 29696313 [TBL] [Abstract][Full Text] [Related]
19. Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching. Filimon F; Nelson JD; Huang RS; Sereno MI J Neurosci; 2009 Mar; 29(9):2961-71. PubMed ID: 19261891 [TBL] [Abstract][Full Text] [Related]
20. Limb position drift results from misalignment of proprioceptive and visual maps. Patterson JR; Brown LE; Wagstaff DA; Sainburg RL Neuroscience; 2017 Mar; 346():382-394. PubMed ID: 28163058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]