These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31348653)

  • 1. Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes.
    Fernandez Lopez M; Nguyen AD; Velazquez Escobar F; González R; Michael N; Nogacz Ż; Piwowarski P; Bartl F; Siebert F; Heise I; Scheerer P; Gärtner W; Mroginski MA; Hildebrandt P
    Biochemistry; 2019 Aug; 58(33):3504-3519. PubMed ID: 31348653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores.
    Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T
    Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome.
    Kraskov A; Nguyen AD; Goerling J; Buhrke D; Velazquez Escobar F; Fernandez Lopez M; Michael N; Sauthof L; Schmidt A; Piwowarski P; Yang Y; Stensitzki T; Adam S; Bartl F; Schapiro I; Heyne K; Siebert F; Scheerer P; Mroginski MA; Hildebrandt P
    Biochemistry; 2020 Mar; 59(9):1023-1037. PubMed ID: 32073262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes.
    Velázquez Escobar F; Buhrke D; Michael N; Sauthof L; Wilkening S; Tavraz NN; Salewski J; Frankenberg-Dinkel N; Mroginski MA; Scheerer P; Friedrich T; Siebert F; Hildebrandt P
    Photochem Photobiol; 2017 May; 93(3):724-732. PubMed ID: 28500706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Electric Field Changes during the Photoconversion of the Bathy Phytochrome Agp2.
    Kraskov A; von Sass J; Nguyen AD; Hoang TO; Buhrke D; Katz S; Michael N; Kozuch J; Zebger I; Siebert F; Scheerer P; Mroginski MA; Budisa N; Hildebrandt P
    Biochemistry; 2021 Oct; 60(40):2967-2977. PubMed ID: 34570488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced reaction mechanisms in prototypical and bathy phytochromes.
    López MF; Dahl M; Escobar FV; Bonomi HR; Kraskov A; Michael N; Mroginski MA; Scheerer P; Hildebrandt P
    Phys Chem Chem Phys; 2022 May; 24(19):11967-11978. PubMed ID: 35527718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum.
    Xue P; El Kurdi A; Kohler A; Ma H; Kaeser G; Ali A; Fischer R; Krauß N; Lamparter T
    FEBS Lett; 2019 May; 593(9):926-941. PubMed ID: 30941759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.
    Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T
    J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes.
    Salewski J; Escobar FV; Kaminski S; von Stetten D; Keidel A; Rippers Y; Michael N; Scheerer P; Piwowarski P; Bartl F; Frankenberg-Dinkel N; Ringsdorf S; Gärtner W; Lamparter T; Mroginski MA; Hildebrandt P
    J Biol Chem; 2013 Jun; 288(23):16800-16814. PubMed ID: 23603902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts.
    Inomata K; Hammam MA; Kinoshita H; Murata Y; Khawn H; Noack S; Michael N; Lamparter T
    J Biol Chem; 2005 Jul; 280(26):24491-7. PubMed ID: 15878872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers.
    Nagano S; Scheerer P; Zubow K; Michael N; Inomata K; Lamparter T; Krauß N
    J Biol Chem; 2016 Sep; 291(39):20674-91. PubMed ID: 27466363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Vibrational Characterization of the Chromophore Binding Site of Bacterial Phytochrome Agp1.
    Takiden A; Velazquez-Escobar F; Dragelj J; Woelke AL; Knapp EW; Piwowarski P; Bart F; Hildebrandt P; Mroginski MA
    Photochem Photobiol; 2017 May; 93(3):713-723. PubMed ID: 28500721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2.
    Inomata K; Noack S; Hammam MA; Khawn H; Kinoshita H; Murata Y; Michael N; Scheerer P; Krauss N; Lamparter T
    J Biol Chem; 2006 Sep; 281(38):28162-73. PubMed ID: 16803878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochromes from Agrobacterium fabrum.
    Lamparter T; Krauß N; Scheerer P
    Photochem Photobiol; 2017 May; 93(3):642-655. PubMed ID: 28500698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2.
    Merga G; Lopez MF; Fischer P; Piwowarski P; Nogacz Ż; Kraskov A; Buhrke D; Escobar FV; Michael N; Siebert F; Scheerer P; Bartl F; Hildebrandt P
    Phys Chem Chem Phys; 2021 Sep; 23(33):18197-18205. PubMed ID: 34612283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved fluorescence anisotropy with Atto 488-labeled phytochrome Agp1 from Agrobacterium fabrum.
    Elkurdi A; Guigas G; Hourani-Alsharafat L; Scheerer P; Nienhaus GU; Krauß N; Lamparter T
    Photochem Photobiol; 2024; 100(3):561-572. PubMed ID: 37675785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence of phytochrome adducts with synthetic locked chromophores.
    Zienicke B; Chen LY; Khawn H; Hammam MA; Kinoshita H; Reichert J; Ulrich AS; Inomata K; Lamparter T
    J Biol Chem; 2011 Jan; 286(2):1103-13. PubMed ID: 21071442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral properties of phytochrome Agp2 from Agrobacterium tumefaciens are specifically modified by a compound of the cell extract.
    Krieger A; Molina I; Oberpichler I; Michael N; Lamparter T
    J Photochem Photobiol B; 2008 Oct; 93(1):16-22. PubMed ID: 18693034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis.
    Borucki B; Seibeck S; Heyn MP; Lamparter T
    Biochemistry; 2009 Jul; 48(27):6305-17. PubMed ID: 19496558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.