BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31348726)

  • 1. Culture-based identification to examine spatiotemporal patterns of fungal communities colonizing wood in ground contact.
    Torres-Andrade P; Morrell JJ; Cappellazzi J; Stone JK
    Mycologia; 2019; 111(5):703-718. PubMed ID: 31348726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil microbial communities associated with Douglas-fir and red alder stands at high- and low-productivity forest sites in Oregon, USA.
    Yarwood SA; Bottomley PJ; Myrold DD
    Microb Ecol; 2010 Oct; 60(3):606-17. PubMed ID: 20449582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal diversity from western redcedar fences and their resistance to beta-thujaplicin.
    Lim YW; Kim JJ; Chedgy R; Morris PI; Breuil C
    Antonie Van Leeuwenhoek; 2005 Feb; 87(2):109-17. PubMed ID: 15793620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum).
    Benucci GM; Lefevre C; Bonito G
    Mycorrhiza; 2016 Jul; 26(5):367-76. PubMed ID: 26743427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon.
    Boyle-Yarwood SA; Bottomley PJ; Myrold DD
    Environ Microbiol; 2008 Nov; 10(11):2956-65. PubMed ID: 18393992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal and bacterial community succession differs for three wood types during decay in a forest soil.
    Prewitt L; Kang Y; Kakumanu ML; Williams M
    Microb Ecol; 2014 Aug; 68(2):212-21. PubMed ID: 24623527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi.
    Burke DJ; Dunham SM; Kretzer AM
    FEMS Microbiol Ecol; 2008 Aug; 65(2):299-309. PubMed ID: 18459969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis.
    Walker JKM; Cohen H; Higgins LM; Kennedy PG
    New Phytol; 2014 Apr; 202(1):287-296. PubMed ID: 24320607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional convergence in the decomposition of fungal necromass in soil and wood.
    Maillard F; Schilling J; Andrews E; Schreiner KM; Kennedy P
    FEMS Microbiol Ecol; 2020 Feb; 96(2):. PubMed ID: 31868883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tree-ring δ15N as an indicator of nitrogen dynamics in stands with N2-fixing Alnus rubra.
    Nehring L; Kranabetter JM; Harper GJ; Hawkins BJ
    Tree Physiol; 2023 Dec; 43(12):2064-2075. PubMed ID: 37672228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wood Decay Associated with Pileated Woodpecker Roosts in Western Redcedar.
    Parks CG; Raley CM; Aubry KB; Gilbertson RL
    Plant Dis; 1997 May; 81(5):551. PubMed ID: 30861946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum.
    Grove S; Saarman NP; Gilbert GS; Faircloth B; Haubensak KA; Parker IM
    Ecol Appl; 2019 Apr; 29(3):e01867. PubMed ID: 30710404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of leaching on fungal growth and decay of western redcedar.
    Chedgy RJ; Lim YW; Breuil C
    Can J Microbiol; 2009 May; 55(5):578-86. PubMed ID: 19483786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock.
    Horton TR; Molina R; Hood K
    Mycorrhiza; 2005 Sep; 15(6):393-403. PubMed ID: 16021480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.
    Wen Z; Shi L; Tang Y; Hong L; Xue J; Xing J; Chen Y; Nara K
    Mycorrhiza; 2018 Jan; 28(1):49-58. PubMed ID: 28942552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative toxicity assessment of materials used in aquatic construction.
    Lalonde BA; Ernst W; Julien G; Jackman P; Doe K; Schaefer R
    Arch Environ Contam Toxicol; 2011 Oct; 61(3):368-75. PubMed ID: 21222116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The core seed mycobiome of
    Bergmann GE; Busby PE
    Mycologia; 2021; 113(6):1169-1180. PubMed ID: 34543153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.
    Barroetaveña C; Cázares E; Rajchenberg M
    Mycorrhiza; 2007 Jul; 17(5):355-373. PubMed ID: 17345105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir.
    Saffell BJ; Meinzer FC; Voelker SL; Shaw DC; Brooks JR; Lachenbruch B; McKay J
    Plant Cell Environ; 2014 Jul; 37(7):1536-47. PubMed ID: 24330052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Home-Field Advantage in Wood Decomposition Is Mainly Mediated by Fungal Community Shifts at "Home" Versus "Away".
    Purahong W; Kahl T; Krüger D; Buscot F; Hoppe B
    Microb Ecol; 2019 Oct; 78(3):725-736. PubMed ID: 30761423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.